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SUMMARY 

Exposure to air pollution has been associated with increased morbidity and 

premature mortality, indicating that sustained reductions in pollution exposure could lead 

to improved health and increased life expectancy. Biomass burning is an important global 

source of gases and aerosols, e.g., carbon monoxide, carbon dioxide, PM2.5 (particulate 

matter with an aerodynamic diameter less than 2.5 µm) and black carbon. These products, 

generally referred to as "smoke" can reduce visibility and have adverse health effect. 

Prescribed burning, a type of biomass burning, is a land management practice used in the 

U.S. to reduce wildfire risk and maintain healthy ecosystems. This dissertation is a 

presentation of research quantifying the impact of prescribed burning on air quality and 

human health in the southeastern U.S., the most active prescribed burning area in the U.S. 

Considering the potential impacts of prescribed burning, the estimation of those 

emissions is crucial. The emissions estimates from National Emission Inventory are based 

on the burned areas reported by the states, which may be subject to significant uncertainty 

since not all prescribed burns have reliable records. Satellite-derived products could be 

used as a substitute tool to provide burned area data. In order to evaluate burned areas from 

satellite-derived products and assess whether they can be used in prescribed fire burned 

area estimation, we conducted a comparison between prescribed burning permit records 

and satellite-derived burned areas for Georgia and Florida on the first four months of 2015 

and 2016, which is the most active burn season in those two states, with two satellite-

derived products: Blended Polar Geo Biomass Burning Emissions Product (BBEP) and 

Global Fire Emissions Database (GFED4s). The comparison results indicate that both 
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satellite-derived data underestimate the burned areas compared to permit recorded data. 

Overall, current satellite-derived products have limitations in estimating the burned areas 

of small fires and still need improvements. 

Another need is to split the combined prescribed fire impact derived from chemical 

transport models (CTMs) into individual fire impacts. A novel source apportionment 

method (Dispersive Apportionment of Source Impacts) has been developed for this by 

using concentration fields derived from dispersion modeling. Individual burn impacts 

obtained in this manner could help local land and air quality managers decide which burns 

should be allowed or restricted based on their impacts on air quality and public health in 

areas of concern. 

The feasibility of applying low-cost PM sensors for the detection of fire impacts 

has been evaluated. The observations from low-cost PM sensor were compared with the 

nearby reference instruments and simulation from a CTM. It was found that low-cost PM 

sensors can provide spatial information that is missed by a sparse regulatory monitoring 

network and, in combination with CTM simulations, they can be used in preparing high 

accuracy exposure fields needed for health assessments. Data fusion is a method that 

integrates observations from sensors/monitors with simulations from CTM to better 

estimate ground-level air pollutant concentrations. The method has been applied to North 

Carolina from 2006 to 2008 to support the University of North Carolina at Chapel Hill’s 

health analysis of coronary heart disease patients by developing spatiotemporal exposure 

fields for PM2.5 mass, five PM species, and three gases at a spatial resolution of 12 km. An 

inter-comparison was also performed of total PM2.5 mass between the fields using data 

fusion and two methods that included satellite aerosol optical depth (AOD) data. The 
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results show that the data fusion method performs best among the three methods in this NC 

application. It has also been utilized to generate exposure fields to smoke from prescribed 

fire. These fields have been input to a health impact function for asthma-related Emergency 

Room Visits to find the health impact due to the prescribed fire in Georgia during burning 

season from 2015 to 2018. The spatial and temporal variation of health impact from 

prescribe burning illustrate the importance of distinguishing seasons and areas when 

looking at the relationship between pollutants exposure from prescribed fire and its health 

effects. Atlanta area has the largest health impact from prescribed burning with most 

population and moderate-level of fire impact. 

Overall, the methods and results presented in this dissertation improve the 

understanding of the impact of prescribed burning on air quality and human health. The 

data generated would also benefit future health epidemiological studies. The work 

presented could be useful to scientists and policy makers interested in prescribed fire and 

air quality, and inspire further research. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivations 

The World Health Organization International Agency for Research on Cancer 

classifies that outdoor air pollution has been classified as carcinogenic to humans by WHO. 

Particulate matter, a major component of air pollution, is associated with increased 

incidences of cardiovascular disease (Brook et al. 2004). Over 4 million deaths (8% of total 

global mortality) were caused by exposure to outdoor PM2.5 in 2015 (Forouzanfar et al. 

2016). In the U.S., PM2.5 is the environmental risk factor with the largest health burden and 

the 6th largest mortality risk overall (Cohen et al. 2017).  

Biomass burning, burning of land covering vegetation, is one of the most important 

global sources of PM2.5. Exposure to smoke from biomass burning has been associated 

with adverse health effects (Reid et al. 2016). Many epidemiological studies have shown 

the associations between short-term PM2.5 exposure from fires and health endpoints, like 

mortality (Faustini et al. 2015; Linares et al. 2015), respiratory effects (Dohrenwend et al. 

2013; Johnston et al. 2014), and cardiovascular effects (Rappold et al. 2011; Yao et al. 

2016).  

Prescribed burning, a type of biomass burning, is a land management tool used to 

improve native vegetation and wildlife habitat, control insects and disease, and reduce 

wildfire risk. In the U.S., prescribed burning is very popular but its practice entails air 

pollution concerns. The U.S. Environmental Protection Agency (EPA) 2014 National 

Emission Inventory (NEI) reported that 14.8% of PM2.5 emissions in the U.S. were 
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attributable to prescribed burning and 27% of PM2.5 emissions from prescribed burning 

originated from the southeastern U.S. (US EPA 2014). Prescribed burning emissions 

remains as one of the most prominent sources of PM2.5 in the southeastern U.S. (24% from 

2014 NEI). Accurate estimation of fire emissions is the first step to modelling the impact 

of those fires on air quality and human health. Emissions estimates in NEI and other 

emission inventories are based on the burned areas reported by the states, which may be 

subject to large uncertainty since not all prescribed burns have reliable records. For 

example, in some states, no permit is required to conduct a burn. Some states keep records 

of the burns on state and private lands, but federal lands are not obligated to report burns 

to the state. Lacking permit data is a problem that need to be solved. Also, the permit 

records themselves have uncertainties since they contain values for areas intended to be 

burned and not the actual burned areas.  

A crucial problem encountered by prescribed burn managers is the conflict between 

the increased demand for burning and the desire for better air quality for health. As wildfire 

risk increased with changing climate (Liu et al. 2010), reliance on prescribed burning will 

increase. Meanwhile strict controls are curbing emissions from other sources of air 

pollution. All these factors are increasing the role of prescribed burning emissions in 

national air pollution.  

Several programs through the U.S. are encouraging participation in forest 

restoration, such as longleaf pine habitat restoration program. With the management of 

those new forests comes the need to burn more than before. Land and air quality managers 

need to know how much burning they can allow per day so that air pollution levels will not 

exceed the national ambient air quality standards (NAAQS) and will not affect local 
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people’s health. A better understanding of the contributions of prescribed burning to air 

pollution, climate change, and human health is important, especially to the people who are 

affected by prescribed burning directly. The land management community also needs a 

path to improve decision making to cope with the possibility of controls.  

The most important concern associated with prescribed burning in the southeastern 

U.S. and intensifying burning activity in the future is the potential to increase human 

exposure to air pollution and the associated health impacts. Rappold et al. (2017) found 

that over 40% of Americans are estimated to live in areas with a moderate or high 

contribution of wildland fires to ambient PM2.5 concentrations. The southeastern U.S. 

houses some of the most vulnerable communities in the nation, and this region is more 

likely to experience high and frequent smoke exposure in comparison to the other parts of 

the country. 

1.2 Research Objectives 

The overall goal of this study was to quantify the effect of prescribed burning on 

air quality and human health. The specific research objectives include: 

1. To evaluate the current satellite-derived burned area by comparing 

with prescribed burning permits data. 

2. To quantify the prescribed burning impact on air quality using low-

cost sensor measurements and chemical transport model. 

3. To quantify the prescribed burning impact on human health based 

on pollutant exposure fields using data fusion method.  

1.3 Thesis Structure 
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This dissertation highlights the major impacts from prescribed burning on air 

quality and public health in the southeastern U.S. The studies presented in the chapters are 

briefly summarized below. 

Chapter 2 evaluates current satellite-derived products and assesses whether they 

can be used in prescribed burning area estimation. An inter-comparison has been conducted 

between prescribed burning permit records and two satellite-derived products, Blended 

Polar Geo Biomass Burning Emissions Product (BBEP) and Global Fire Emissions 

Database (GFED4s), in Georgia and Florida during the burn season for 2015 and 2016.  

Considering that policy makers and local air quality managers are often more 

interested in the impacts of a single prescribed burn when deciding if it should be allowed 

or if it will have a major impact on people or areas of concern (e.g., highways, airports), in 

Chapter 3, we introduce a novel source apportionment method (Dispersive Apportionment 

of Source Impacts (DASI)) and apply it to split the combined prescribed burning impact 

from chemical transport model (Community Multiscale Air Quality (CMAQ) (Byun and 

Schere 2006a)) using the decoupled direct method (Napelenok et al. 2006) (DDM) into 

individual burn impact by using a dispersion model (Hybrid Single Particle Lagrangian 

Integrated Trajectory (HYSPLIT) (Stein et al. 2015)). We applied the method on clustered 

prescribed burns, including three fires with the same burned area but different emissions 

due to different fuel loadings and consumptions. One of the most important contributions 

of this new method is that not only it can be used to split combined fire impact, but it could 

also be applied to other emission sources as a source apportionment method.  

Chapter 4 evaluates the feasibility of using a low-cost PM sensor as a supplemental 

measurement of PM2.5 concentrations in southwestern Georgia, one of the most active 
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prescribed burning areas in the southeastern U.S. Three low-cost sensors (Plantower PMS 

3003) were initially deployed at three high schools (Dougherty, Lee, and Worth County 

High Schools (DCHS, LCHS, WCHS)) to measure the local PM2.5 concentrations starting 

in May 16, 2017 and a fourth low-cost sensor was placed next to the state monitoring site 

on March 14, 2018. Different calibration methods have also been evaluated. CMAQ was 

also used to simulate the contribution of prescribed burning on PM2.5 concentration. We 

also compared the simulation with the observation obtained from both the low-cost sensors 

and the reference monitor. A recommendation has been presented that suggests fusing 

model simulations with observations from a dense network of low-cost sensors to provide 

accurate exposure fields from smoke. 

The fusion method mentioned above is called data fusion, a new method that 

combining monitor observations and simulated data from a chemical transport model to 

obtain spatiotemporal pollutant fields. There is a trend in the air pollution community to 

use combinations of modeled and observed air quality data to estimate air pollutant 

concentration fields for use in exposure estimation. In Chapter 5, we applied this method 

to North Carolina from 2006 to 2008 for PM2.5 total mass, OC, EC, SO4
2-, NO3

-, NH4
+, CO, 

NOx, and NO2. These resulting fields capture the spatiotemporal information provided by 

the air quality model, as well as the finer temporal scale variations from the pollutant 

observations and decrease model biases. Several data withholding methods are then 

conducted to evaluate the data fusion method. We also compared the PM2.5 fields from data 

fusion with the other two methods that use satellite aerosol optical depth (AOD) data. We 

highlight the major advantage of CTM-based data fusion methods over methods relying 
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mostly on AOD is that it provides speciated PM2.5 and gaseous pollutant fields which are 

important to epidemiological studies.  

Given the influence fire can exert on PM2.5 levels, assessing the impact of 

prescribed burning on public health is a major research need. In Chapter 6, we explored 

the health impact from prescribed burning in Georgia for the first four months from 2015 

to 2018. A typical health impact function was utilized to calculate the health impact with 

Emergency Room (ER) visits due to asthma as the health endpoint. Health incidence rate 

and population data were extracted from the Environmental Benefits Mapping and 

Analysis Program – Community Edition  (BenMAP-CE) (Sacks et al. 2018), an open-

source computer program that calculates the number and economic value of air pollution-

related deaths and illnesses. The adjusted prescribed burning impact on PM2.5 comes from 

CMAQ-DDM after applying data fusion method. We provide some recommendations to 

the epidemiological study according to the findings in this study. For instance, there are 

specific days and areas to focus on to investigate the relationship between health effects 

and prescribed burning. Also, the temporal and spatial variations of prescribed burning 

impact on human health needs to be further studied.  

Chapter 7 concludes with the major findings from the above studies. Plans for 

future research to further improve the understanding of the impacts of prescribed burning 

on air quality and human health are also presented.  
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CHAPTER 2. BURNED AREA COMPARISONS BETWEEN 

PRESCRIBED BURNING PERMITS IN SOUTHEASTERN USA 

AND TWO SATELLITE-DERIVED PRODUCTS  

As published in Journal of Geophysical Research: Atmospheres 

Abstract 

Prescribed burning is one of the most prominent sources of PM2.5 (particulate matter 

with an aerodynamic diameter less than 2.5 μm) in the southeastern US. The prescribed 

burning emissions estimates may have significant uncertainty because they are based on 

the burned areas reported to the state agencies when burners apply for burn permits. When 

no permit records are available, satellite-derived products could be used as a substitute tool 

to provide burned area data. In order to evaluate burned areas from satellite-derived 

products, we conducted a comparison between prescribed burning permit records and two 

satellite-derived products, Blended Polar Geo Biomass Burning Emissions Product 

(BBEP) and Global Fire Emissions Database (GFED4s), in Georgia and Florida. The 

comparison results indicate that both satellite-derived products underestimate seriously the 

burned areas compared to permit record data. They can capture a cluster of fires better than 

isolated fires but may misinterpret those small fires together as one big fire. Overall, current 

satellite-derived products have limitations in estimating the burned areas of small fires and 

still need improvements. 

2.1 Introduction 
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Biomass burning (BB) is the burning of land covering vegetation for a wide range 

of purposes ranging from land clearing to restoring nutrients to the soil. Emissions from 

BB could interact with the atmosphere and climate systems, change carbon balances and 

atmospheric chemistry components, and affect clouds and precipitation (Liu 2005), 

permafrost structure, and surface albedo (Natarajan et al., 2012; Randerson et al., 2006; 

Sokolik et al., 2010). BB is also an important global source of aerosols such as PM2.5 

(particulate matter with an aerodynamic diameter less than 2.5 μm) and black carbon 

(Andreae and Merlet 2001), which can affect human health, and smoke, which can reduce 

visibility and paralyze highway transportation. Considering the potential impacts of BB, 

the estimation of those emissions is crucial. Typically, emissions are calculated by the 

amount of burned area, biomass present in the ecosystem, efficiency of combustion and 

pollutants emitted per unit mass of fuel consumed, a.k.a. emission factors (Seiler and 

Crutzen 1980). Here, we will focus on the burned area.  

Prescribed burning is a type of BB employed as a land management tool since the 

1930’s to improve native vegetation and wildlife habitat, control insects and disease, and 

reduce wildfire risk in the U.S. (Leopold 1987).  The U.S. Environmental Protection 

Agency (EPA) 2011 and 2014 National Emission Inventories (NEIs) reported that 14.8% 

(2014) and 15.1% (2011) of PM2.5 emissions in the U.S. are attributable to prescribed 

burning and 27% of PM2.5 emissions from prescribed burning originate from the 

southeastern U.S. (U.S. EPA, 2011, 2014). Prescribed burning is one of the most prominent 

sources of PM2.5 emissions in the southeastern U.S. (20% in 2011 and 24% in 2014), and 

will become an increasing source as other sources are controlled. According to 2014 NEI, 

nearly 50% of all fire-related PM2.5 emissions are from prescribed fires while over 75% of 
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those emissions come from prescribed fires in the southeastern states. These emissions 

estimates are based on the burned areas reported by the states, which may be subject to 

large uncertainty since not all states have reliable prescribed burn records. In some states, 

a permit is not necessary to conduct a burn. Some states keep records of the burns on state-

owned and private lands but federal land managers are not obligated to report burns to the 

state. Also, the permit records themselves have uncertainties since they contain values for 

areas intended to be burned, not actual burned areas. Finding another, more reliable way to 

estimate those prescribed burned areas is important for accurately estimating the emissions 

of prescribed burning and evaluating its impacts to air quality. 

Several satellite-derived products such as HANDS (Hotspot and NDVI 

Differencing Synergy) (Fraser et al., 2000a, 2000b), GBA2000 (Tansey et al., 2004), 

GWEM (Hoelzemann 2004), Global Fire Emissions Database 3 (GFED3) (Giglio et al., 

2010), MCD45A1 (Roy et al., 2008), L3JRC (Tansey et al., 2008a, 2008b), GLOBSCAR 

(Simon et al., 2004), Global Burned Surfaces (GBS) (Carmona-Moreno et al. 2005), Global 

Fire Emissions Database (GFED4s) (Giglio et al., 2013) and Blended Polar Geo Biomass 

Burning Emissions Product (Blended-BBEP or BBEP in this paper) (Zhang and 

Kondragunta 2008) have been developed for estimating the burned area of BB. Only 

GFED4s and BBEP continue to be available publicly at this time. Several evaluations 

(Boschetti et al., 2004; Chuvieco et al., 2016; Hoelzemann, 2004; Kukavskaya et al., 2013; 

Li et al., 2000; Li et al., 2003; Randerson et al., 2012; Zhu et al., 2017) have been conducted 

to examine the uncertainties of those products. Although these products are in good 

agreement with emission inventories reported by different countries in most regions around 

the globe, there are major disagreements in terms of burned area estimates, which could be 
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caused by spatial, temporal and spectral disparities, distinct algorithms and instrument drift 

from different satellite products (Boschetti et al. 2004; Kukavskaya et al. 2013). For 

example, GWEM emissions are biased low in most regions compared to the ATSR-scaled 

MOZART inventory (Schultz 2002) but the uncertainty is the largest in regions where 

small fires dominate (Hoelzemann 2004).  Those small fires may have a large impact on 

global BB carbon emissions (Randerson et al. 2012). Zhu et al. (2017) found large 

underestimation in croplands by comparing burned area from Moderate Resolution 

Imaging Spectroradiometer (MODIS) and other satellite products with higher resolution. 

Zeng et al. (2016) compared fire counts from MODIS with Visibility Improvement – State 

and Tribal Association of the Southeast (VISTAS) fire inventory and reported improved 

model performance with the MODIS-updated fire emission inventory. Hu et al. (2016) 

performed a comparison between Hazard Mapping System (HMS) fire product with permit 

records based on fire detection rate as a function of burned area. Up to now, uncertainty in 

satellite burned area estimates has been estimated only through comparison of different 

satellite products; there has been no comparison of satellite burned area estimates with 

ground-based burned area measurements or estimates. 

In prescribed burning, fires are usually small to keep them under control. Satellite-

derived products may have large uncertainty when used in estimating burned area of those 

small fires (Hoelzemann 2004; Randerson et al. 2012; Kukavskaya et al. 2013; Mouillot et 

al. 2014). This is especially true for current operational geostationary satellites whose 

imagers have a spatial footprint of 4 km in nadir view and as large as 8 – 12 km at the edge 

of the scan. This can lead to missed detections if fire temperature is not too high compared 

to surrounding pixels as the algorithm uses surrounding pixels to obtain background 
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temperature (Schroeder et al. 2010). In order to evaluate those satellite-derived products 

and assess whether they can be used in prescribed burning burned area estimation, we 

conducted a comparison between prescribed burning permit records and satellite-derived 

burned area. This paper will focus on the comparison of prescribed burning permit records 

in Georgia and Florida in the first four months of 2015 and 2016, which is the most active 

burn season in those two states, with two satellite-derived products: BBEP and GFED4s. 

The goal is to assess the uncertainty of those two products and to determine whether they 

can be used in follow-up research to forecast the prescribed burning impact on air quality. 

2.2 Data 

2.2.1 Burn permit data 

2.2.1.1 Georgia prescribed burn permit record data 

Georgia is one of the most active states in applying prescribed burning in the U.S. 

The Georgia Forestry Commission (GFC) is responsible for prescribed burning services in 

the state. It is necessary to obtain a burn permit from the local GFC office before burning 

woods, lands, marshes or other flammable vegetation. Burn permits contain the contact 

information of the landowner, county of burn, location of the burn, acres to be burned, the 

start and end times of the burn and the name/phone number of the person to contact during 

the burn in case additional information is needed according to Georgia Prescribed Burning 

Act (GA Code Ann. 12-6-145 – 12-6-149). The prescribed burning season for Georgia is 

from 1 October through 30 April. A burn ban goes into effect in 54 counties during the 

ozone season (1 May – 30 September). We obtained permit record data from GFC for the 

years 2015 and 2016. Considering the ozone season restriction and the relatively small 
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number of burns during October – December, we focused our analysis on the first four 

months of each year. Some permits have latitude/longitude information of the burn but 

most of them only have an address, which may be in a non-standard format that is difficult 

to be geo-referenced.  

2.2.1.2 Florida open burn authorization record data 

Florida, another high burn activity state in the U.S., issues 120,000 authorizations 

allowing landowners and agencies to prescribe burn an average of over 2 million acres 

(800,000 hectares) each year. Florida Forest Service (FFS), a division of Florida 

Department of Agriculture and Consumer Services, is in charge of managing prescribed 

fire in Florida. Landowners need to contact the local FFS office with their customer number 

and provide the location and size of their burn to get an authorization. A smoke plume 

model is executed before approving the burn request to make sure there are no potential 

problems with the smoke from the burn. The dominant burn types in Florida are 

agricultural, land clearing and silvicultural burns. We obtained open burn authorization 

(permit) data from FFS for the years 2015 and 2016 and conducted an analysis of the first 

four months of each year. Each open burn authorization in Florida has latitude and 

longitude information, which are either provided by a GPS device or from a digitized map 

during the authorization process.  

2.2.1.3 Uncertainty of permit records 

The permit records are considered to be accurate by the permit issuing agencies 

based on their experience and anecdotal evidence but there is no scientific research to 

support this hypothesis. One of the strongest support for their hypothesis is that the permits 
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are issued on the day of the burn and, when a landowner calls for a permit, there is a strong 

intention to burn. However, weather may still play a role in whether a burn is conducted or 

not on that day after the permit is issued. If the weather onsite is not conducive to a 

successful burn, permit holders may choose not to exercise their right to burn. 

Another source of inaccuracy may be the recorded size of the burn. The burned 

areas in permit records are not necessarily equal to the actual burned areas; they are simply 

estimates of areas planned to be burned. Even if the burn is conducted on the day the permit 

was issued for, the actual burned area may differ from the permitted area. Considering the 

difference between the fire weather forecast and actual field conditions during the burn, 

landowners may burn more or less land than they reported at the time of permit application. 

For example, landowners usually ask for a permit for the total area of their land but 

drainage areas are not burned and some sensitive ecosystem areas may be avoided. 

Neither Georgia nor Florida follows up with the burners to find out the actual 

burned areas. We conducted a limited survey in Georgia to evaluate how well the burned 

area values in permit records represent the actual burned areas. We called a small subset of 

the landowners and asked them to report any differences between the actual burned areas 

and the areas on the permit records. Because of the difficulty many landowners had in 

retrieving older records for, we surveyed burns from 2016 and 2017. Our initial selection 

of the burners aimed to be representative of the sizes and geographic locations of the burns 

throughout the state but the respondents did not necessarily match these profiles.  

2.2.2 Satellite-derived data 

2.2.2.1 Blended Polar Geo Biomass Burning Emissions Product (Blended-BBEP) 
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The Blended-BBEP is a continuous product for North America of BB emissions 

with active fire data that are detected using WildFire Automated Biomass Burning 

Algorithm (WF_ABBA) from GOES (Prins and Menzel 1992; Prins and Menzel 1994), 

Fire Identification, Mapping, and Modeling Algorithm (FIMMA) from the Advanced Very 

High Resolution Radiometer (AVHRR) (Li et al. 2000a; He and Li 2012), and an enhanced 

contextual fire detection algorithm from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Giglio et al., 2003; Giglio et al., 2016). The Blended-BBEP 

is produced by blending, every six hours, fires detected from GOES-East, GOES-West, 

MODIS on both the NASA Terra and Aqua satellites, and AVHRR on NOAA-15/17/18. 

The outputs include burned area and emissions of the following species: PM2.5, CO, CH4, 

CO2, total non-methane hydrocarbon, NH3, N2O, NOX, and SO2. The burned area is 

simulated using active fire observations from MODIS, AVHRR, and GOES for each GOES 

fire pixel (Zhang et al., 2011). Instantaneous fire size obtained from 30-minute GOES 

observation using WildFire Automated Biomass Burning Algorithm (WF-ABBA) is found 

to be an accurate representation of burned area for that time interval. The determination of 

fire size happens for approximately 20-30% of all WF-ABBA detected fires. For fires that 

are detected but not determined in size by the WF-ABBA algorithm, the size is simulated 

using climatological diurnal variation in fire size specific to biomass type where the fire is 

observed. If fire hot spots are detected only by polar-orbiting satellites, fire size is 

determined using a conversion factor that was derived by regressing fire hotpots with the 

burn scars detected from post-fire Landsat ETM+ (Enhanced Thematic Mapper plus) 

imagery. We downloaded the 2015 and 2016 BBEP data from the BBEP website 

(http://satepsanone.nesdis.noaa.gov/pub/FIRE/BBEP-geo/PREVIOUS_DAYS/). 
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2.2.2.2 Global Fire Emissions Database (GFED4s) 

Global Fire Emissions Database provides monthly burned area and fire emissions 

by combining satellite information on fire activity and vegetation productivity. The current 

version, Version 4, has a spatial resolution of 0.25 degrees. GFED4s is the product 

including small fires, combining 1-km thermal anomalies (active fires) from Terra and 

Aqua and 500 m burned area observations from MODIS daily composition thermal 

anomaly/fire products (MOD14A1 and MYD14A1) (Randerson et al. 2012). Small fire 

burned area is estimated by computing the difference normalized burn ratio (dNBR) for 

these two sets (1-km and 500m) of active fires and then combining these observations with 

other information such as efficacy of the burned area detection algorithm, the frequency of 

satellite overpasses and the rate of movement of the fire front (Randerson et al. 2012). We 

obtained the monthly GFED4s data from Dr. James Randerson’s group at University of 

California, Irvine. 

2.2.2.3 Burned Area Essential Climate Variable (BAECV) 

To test the effect of finer spatial resolution, we used BAECV as an additional 

product. BAECV is the burned area product from Landsat satellite developed by the U.S. 

Geological Survey (USGS) (Hawbaker et al. 2017). Landsat has a repeat cycle of 16 days 

and BAECV only has annual data over CONUS with 30m×30m resolution. BAECV uses 

a gradient boosted regression model to estimate the probability that pixel had burned, 

followed by a thresholding process to generate a binary burned or unburned classification. 

We downloaded the 2015 BAECV data from the USGS website 

(https://rmgsc.cr.usgs.gov/outgoing/baecv/BAECV_CONUS_v1_2017/).  

https://rmgsc.cr.usgs.gov/outgoing/baecv/BAECV_CONUS_v1_2017/
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2.2.3 Correlation Analyses  

We conducted correlation analyses using Pearson and Spearman correction 

coefficients. Using daily state total burned areas from Georgia’s permit records and BBEP, 

we performed a log-transformation of the data to test if Pearson correlation coefficient is 

suitable for our analysis. Since BBEP data may have zero burned area on some days, which, 

when log-transformed, would lead to negative infinity, we added 30 acres (which is 

approximately equal to BBEP’s detection limit) to both permit-record and BBEP burned 

areas. Then we took the common logarithms (log10 (x)) of both permit and BBEP data and 

plotted their correlations. Finally, we calculated the residuals of both the untransformed 

and transformed data sets as yobs – ymod where ymod = x × Slope + Intercept, yobs is the BBEP 

data and x is the permit data before or after the log transformations. 

2.3 Results and Discussions 

Prescribed burning includes controlled fires conducted for the maintenance and 

protection of commercial timber stands, land clearing, agriculture, reduction of vegetative 

fuels for wildfire prevention, and management of fire-dependent ecosystems. Here, we 

considered all burn permits/authorizations with records of burned areas.  

2.3.1 Burn permit survey 

The target sample size of our phone call survey was approximately 10% of the total 

area that got burned during the calendar year. There was a total of 96 respondents in our 

survey. Many respondents are from professional companies that have complete records of 

the burns they conducted. To those that did not have detailed records of their burns, we 
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asked to report the total acreage of their land minus the known protected areas to get the 

approximate area they burned. The result shows good agreement between permitted and 

actual burned area with r2 equal to 0.64 and 0.84 for 2016 and 2017, respectively (Figure 

2-1). Each point on the plot represents the totals for one burner. The figures include 371 

small (less than 60 acres), 228 medium (60 to 134 acres) and 215 large (larger than 135 

acres) burn permits for 2017, and 346 small, 212 medium and 185 large permits for 2016. 

The survey results suggest larger uncertainty in 2016 permit records than 2017 since the 

regression line deviates more from the 1:1 line with a slope of 0.78 versus 0.83 and an 

intercept of 85 versus 46. This may be simply due to better remembrance of the more recent 

year’s burns. 

Figure 2-1 The results of a phone call survey comparing permitted and actual 

burned areas in Georgia for 2016 and 2017 

The burned area data came from permit/authorization records. Actual burned areas 

are not tracked by the authorizing agencies (GFC and FFS) and the landowners are not 

required to call back and confirm or correct the burned areas. Our phone survey revealed 

that unburned areas within the plots such as drainages, deer camps and structures are not 

always excluded. However, our survey also found that this constitutes a small part of the 
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uncertainty. Unsuccessful burns remain in the records as permitted. GFC which has 

evaluated this issue before, postulates that since almost all of their permits were issued on 

the day of the burn, after the landowner reviewed the fire weather forecast and assessed the 

fuel conditions, the landowner’s estimate is reliable. However, our survey discovered that 

a few burns were called off after the attempts of ignition, because it became obvious that 

the objectives would not be achieved. Considering all these factors, we placed the 

uncertainty of the burned area in the permit records at 20%. 

2.3.2 Comparison of state, district and county total burned areas 

Almost 50% of the prescribed burns in Georgia have areas smaller than 5 acres 

according to the permit records while, according to BBEP, nearly 80% of the fires have 

sizes ranging between 25 to 50 acres (Table A - 1). This inconsistency of the dominant fire 

size between the two datasets may be due to the satellite detection limit. In Florida, about 

25% of the authorized burns have sizes between 25 to 50 acres, with another 20% ranging 

between 50 to 100 acres (Table A - 2). However, more than 45% of the fires BBEP captures 

are in the 25 to 50 acres size range, with less than 10% between 50 to 100 acres. BBEP 

does not capture any fires between 0 to 5 acres, while almost 20% of the burns in permit 

records are in this size range. 
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The comparison of state totals indicates that, in Georgia, both BBEP and GFED4s 

underestimate the burned areas compared to the permit records (Figure 2-2). GFED4s only 

accounts for 7.6% and 11% of the burned areas in permit records while BBEP accounts for 

15% and 44% in the first four months of 2015 and 2016, respectively. All datasets show 

an increase in burned areas in Georgia from 2015 to 2016. In Florida, BBEP and GFED4s 

also underestimate the burned areas with respect to the permit records. GFED4s’ state total 

burned areas are 19% and 16% of those in permit records in 2015 and 2016, respectively. 

BBEP’s are 15% and 75% of burned areas in permit records. Permits and GFED4s show a 

decrease in burned area from 2015 to 2016 while BBEP shows a large increase. 

Figure 2-2 Comparison of state total burned areas from permit records, Biomass 

Burning Emission Product (BBEP), and Global Fire Emissions Database (GFED4s) 

in Florida and Georgia for the first 4 months of 2015 and 2016. 

Total burned areas in permit records of Georgia from January to April in 2015 and 

2016 show that most of the burn activity takes place in the southwest portion of the state 
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(Figure A - 1). The dominant burn types here are land clearing and hazard reduction burns. 

Neither GFED4s nor BBEP captures the level of burned area in permit records (the scale 

is 10 times larger for 2015 and 2016 permits in Figure A - 1). BBEP is in better agreement 

than GFED4s with the permits in terms of the burn locations. In Florida, the largest burned 

areas in permit records are in the panhandle and the southcentral counties (Figure A - 2 

where the scale is five times larger for 2015 permits and four times larger for 2016 permits). 

The dominant burn type in Florida is agricultural burn. Compared to 2015 burned areas in 

permit records, most counties have a decrease in total burned area in the first four months 

of 2016. However, BBEP shows an increase of burned area in 2016 compared to 2015. 

Both GFED4s and BBEP underestimate the total burned areas for most counties. We also 

compared the fires between Hazard Mapping System Fire and Smoke Product (HMS, a 

product which shows the detected hot spots and smoke plumes indicating possible fire 

locations by combining human analysis with the satellite data) with  BBEP and found some 

differences but nothing that might explain the large difference from the permit data. 

Prescribed burns are typically ignited around noon and put out before sundown. The 

flaming phases are typically very short (1-2 hours). If the sky is overcast by clouds during 

these periods, the satellites cannot detect the fires. Finally, we extracted the 2015 Georgia 

burned area data from BAECV and compared with the permit records for the whole year 

(Figure A - 3). The results are similar to the other two satellite products: while BAECV 

captures the spatial patterns, it underestimates the total burned areas.  

The potential uncertainty due to geolocation is reduced in our county-by-county 

analysis. While the uncertainty of geolocations is a concern (more so in Georgia where 

some non-standard addresses could not be converted accurately to geolocations than in 
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Florida where the coordinates were available for all the burns), the burn locations should 

be within the same county due to permitting requirements and practices. The discrepancies 

between the satellite and the permits in the county-wise analysis are most likely due to the 

inability of the satellites to detect the burns. Prescribed fires in Georgia and Florida are 

usually both low intensity and under the tree canopy making satellite detection difficult. In 

addition, the frequent presence of clouds in the region during the active burn season further 

obscures the satellites’ view (Gibson and Vonder Haar 1990; Connell et al. 2001).  

In addition, we compared the district total burned areas for 11 fire districts in 

Georgia (Figure A - 4a) and 15 fire districts in Florida (Figure A - 4b). For the first 4 

months of 2015, BBEP is more correlated with permit record burned areas than GFED4s 

(Figure A - 5 and Figure A - 6). There is a strong correlation between BBEP and GFED4s 

burned areas because both of them use data from MODIS. The correlation is larger for 

district totals compared to the county totals in Georgia but the opposite is true in Florida.  

2.3.3 Comparison of BBEP daily total and GFED4s monthly total burned areas with 

permit data 

The permit record and BBEP daily state total burned areas are correlated in the first 

four months of 2015 in Georgia and Florida with r2 equal to 0.57 and 0.66, respectively 

(Figure 2-3). However, they are not correlated as strongly in 2016 (r2 = 0.29 and 0.14), 

because of the days when BBEP state total burned areas are larger than those from permit 

records. The slope of all regression lines are smaller than 1.0 and in 2015, the year with 

good correlations between permit records and BBEP, the slopes are smallest with values 

equal to 0.17 and 0.15 for Georgia and Florida, respectively. These slope values and the 
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scatter plots of Figure 2-3 show that BBEP may underestimate the burned area by more 

than 80%. Note that permit records only account for prescribed burns while satellites 

cannot differentiate prescribed burns from wildfires. However, our investigations showed 

no major wildfire incidences on those days.  

Figure 2-3 Comparison of daily state total burned areas for the first 4 months of 

2015 and 2016 in Georgia (top row) and Florida (bottom row): Biomass Burning 

Emission Product (BBEP) versus permit record data. 

The correlation of log-transformations is strong (R2 ≥ 0.63) in both years for a 

near-linear relationship between the permit and BBEP burned areas as implied by a slope 

close to unity (0.74 in 2015 and 0.88 in 2016, Figure A - 7). The similarity in the slopes 
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and intercepts suggests a similar population for the two years. Therefore, the 2016 results 

are not really that different, though they are visually different because of the few times 

BBEP have values above the 1:1 line. When we plotted histograms of the residuals of both 

the untransformed and transformed data sets for comparison, we found that the log-

transformation residuals are more normally distributed than the untransformed residuals 

(Figure A - 8). In addition, we calculated the Spearman’s R between permit records and 

BBEP for Georgia in 2015 and 2016. The Spearman’s R is 0.81 and 0.84 for 2015 and 

2016, respectively, while the p-values are much less than 0.05. 

Considering GFED4s only has the monthly total burned areas, there are only four 

points per year in the comparisons between permit records and GFED4s (Figure 2-4). There 

is strong correlation between GFED4s and permit record burned areas both in Georgia and 

Florida for 2015 (r2 = 0.61 and 0.42) as well as 2016 (r2 = 0.53 and 0.89). 
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Figure 2-4 Comparison of monthly state total burned areas for the first four months 

of 2015 and 2016 in Georgia (top row) and Florida (bottom row): Global Fire 

Emissions Database (GFED4s) versus permit record data. 

2.3.4 Comparison of daily fire counts between permit record data and BBEP 

BBEP has difficulty detecting the prescribed burns according to the comparison of 

BBEP fire counts with the burn counts in permit records (Figure A - 9). In Georgia, 

although the correlations between the daily counts are good (r = 0.71 for 2015 and 0.73 for 

2016), BBEP fire counts are only about one-tenth (2015) and one-twelfth (2016) of permit 
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record burn counts. In Florida, the average daily number of burns from permit records, 120, 

is four times larger than the average daily number of fires from BBEP in 2015. In 2016, 

the average daily count from permit records, 132, is more than four times larger than that 

from BBEP.  

2.3.5 Special days analysis in Florida 

Because Florida permit record data has latitude and longitude information for all 

the burns we were able to perform spatial comparisons between permit record burns and 

BBEP fires. This analysis focused on special days. Uncertainties in this spatial analysis 

include possible human errors in converting the permit address to latitude and longitude 

and the limited resolution of the satellites. 

For 17 March 2016, although state total BBEP and permit record burned areas are 

almost the same in Florida (~1.40×104 acres), the locations of the fires are quite different 

(Figure 2-5). In particular, BBEP fires do not agree with the small burns permitted in South 

Florida; there are only a few small fires detected by the satellite and their locations are 

different from those of the permitted burns. In addition, larger fires seen by the satellite in 

South Central Florida are in different locations, even different counties.  
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Figure 2-5 Spatial comparison between permitted burns and Biomass Burning 

Emission Product (BBEP)-detected fires in Florida on 17 March 2016: Individual 

burned areas (ha) (left) and county-total burned areas (ha) (right). 

For 18 March 2016, there is an overlap of permitted burns and BBEP-detected fire 

locations; however, BBEP detects one very large fire (~10,000 acres) in South Central 

Florida while the permit database implies many small fires in that area (Figure 2-6). The 

county total burned area for the satellite-detected fires is much larger than the one for 

permitted burns in Charlotte County, Florida.  BBEP may be interpreting several small 

fires as one big fire, as previously reported in the literature for other satellite products 

(Kukavskaya et al. 2013). This would lead to an overestimation by the satellites of the 

burned area for small fires such as prescribed burns.  
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Figure 2-6 Spatial comparison between permitted burns and BBEP-detected fires in 

Florida on 18 March 2016: Individual burned areas (ha) (left) and county-total 

burned areas (ha) (right). 

2.3.6 Sugarcane burn comparison in Florida 

The dominant burn type in Florida’s Glades, Hendry and Palm Beach Counties is 

agricultural sugarcane burn (Figure A - 10). Considering the high frequency of sugarcane 

burns and that they are conducted in open fields, satellites should be efficient in detecting 

this type of burns. Taking Palm Beach County as an example, there is no correlation 

between the burned areas of permitted sugarcane burns and BBEP-detected fires in either 

2015 or 2016 (Figure A - 11). However, the red dots in the comparisons of district-wise 

and county-wise total burned areas in Figure A - 6 that represent District 18, which includes 

Palm Beach County, and Palm Beach County, respectively, show better than average 

agreement between the satellite products and permit records. This may be an indication 

that satellites can detect the sugarcane burns better than other types of burn. 



28 

The improvement in sugarcane burn detection is not as obvious according to the 

comparisons of BBEP-fires with non-sugarcane burns (i.e., all burn types except 

sugarcane) in Florida (Figure A - 12). The r2 of the 2015 comparison of daily state total 

burned areas between BBEP-detected fires in Florida and the permitted non-sugarcane 

burns is 0.69, slightly larger than that of the comparison with all permitted burns (0.66, 

Figure 2-3).  

2.4 Conclusions 

Current satellite-derived products have limitations in estimating the burned areas 

of small prescribed fires. Comparisons between permit record datasets and two satellite-

derived datasets show that satellite products underestimate seriously the burned areas. The 

BBEP burned areas for 2016 are different from those for 2015, with no correlation between 

BBEP and permit record data in daily totals; on the other hand, GFED4s has good 

correlations with permit record data in monthly totals for both 2015 and 2016. Given the 

limited resolution of the satellite products, from coarser resolution district level to finer 

resolution county level, the correlation of the satellite burned areas with those of the permit 

records gets worse.  

Satellite-derived products can capture a cluster of fires better than isolated fires, but 

may misinterpret those small fires together as one big fire, as shown in our special day 

analyses in Florida. Sugarcane burn is the dominant burn type in three counties in southern 

Florida. Considering the openness and wide area of the sugarcane plantations, the high 

frequency of the burns, and the amount of heat produced, sugarcane burns should be 

detected more efficiently by the satellites. However, burned area comparisons of BBEP 
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with permit records show only a slight improvement compared to other types of burn. The 

lack of convergence in sugarcane burns points to systemic problems such as relatively 

small sizes of those fields with respect to the resolution of geostationary satellites and short 

durations of the burns that are not in tune with the low frequency of overpasses for Earth-

orbiting satellites. 

Considering the deficiencies of satellite-derived products, and also the missing data 

caused by cloudy days, we trust the permit records more. We showed that satellite products 

vastly underestimated prescribed fire burned areas in the Southeastern U.S. due to their 

small sizes. Therefore, emission inventories that use satellite-derived burned areas as input 

should be adjusted accordingly. On the other hand, satellite-derived products need to 

improve their accuracy in detecting small prescribed fires by taking advantage of new 

developments. For example, while the current GOES pixel resolution may be too coarse to 

resolve small fires, the newly launched GOES-16 Advanced Baseline Imager has 2-km 

spatial and 5-minute temporal resolution; therefore, it should enable considerably better 

quality products for detecting and monitoring prescribed burning fires. 
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CHAPTER 3. APPORTIONING EMISSION SOURCE-GROUP 

IMPACTS AMONG INDIVIDUAL SOURCES THROUGH 

DISPERSION MODELING: APPLICATION TO PRESCRIBED 

FIRES 

Abstract 

As a preferred land management tool to decrease the particulate matter (PM) 

emissions from wildfire, there is an increasing trend to have more prescribed burning 

activity in the U.S. However, prescribed burning is also a prominent source of PM. A novel 

source apportionment method (Dispersive Apportionment of Source Impacts (DASI)) has 

been developed and applied to split the combined prescribed fire impact from the chemical 

transport model (CTM) by using fields from a dispersion model. The results show that 

DASI works well with large and small emission fires that do not have too much interaction 

with other fires when comparing the apportioned fire impacts with single burn impacts 

simulated by CTM directly. Individual burn impacts obtained by splitting the combined 

burn impacts from CTM could help local land and air quality managers to decide which 

burns should be allowed or restricted based on their impacts on public health and air quality 

in areas of concern. DASI could also be applied to conduct source apportionment by 

splitting the pollutant concentrations including different sources.   

3.1 Introduction 

Prescribed burning is a land management tool commonly utilized in the United 

States (U.S.) to maintain healthy ecosystems and to reduce the risk of catastrophic 
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wildfires. The southeastern U.S. is the most active prescribed burning area. Florida, 

Georgia and Alabama lead the nation in acreage burned with around 0.8 million ha, 0.5 

million ha and 0.4 million ha respectively in 2017 (In Statista - The Statistics Portal. 2018). 

Research shows that climate change increases the potential for very large fires in the U.S. 

(Barbero et al. 2015). While prescribed burning is a useful tool to control wildfires, there 

is a conflict between increased demand for burning and the desire for better air quality for 

public health concerns. According to the 2014 U.S. National Emission Inventory (NEI) 

(US EPA 2014), 12.5% of PM2.5 emissions in the U.S. come from prescribed burning. In 

the southeastern U.S., around 30% of PM2.5 emissions are from prescribed burning while 

only 3% are from wildfires. A clear understanding of prescribed burning impact on air 

quality is important. 

Most previous research related to prescribed burning impacts on air quality focus 

on historic fires. Achtemeier et al. (Achtemeier et al. 2012) used Daysmoke, an empirical-

statistical plume rise model, to simulate a prescribed fire in the southeastern U.S. to show 

the feasibility of using Daysmoke to model prescribed burning plume rise. Davis et al. 

(Davis et al. 2015) examined uncertainties associated with estimating fire emissions and 

their effect on smoke concentrations downwind using Daysmoke. Choi et al. (Choi and 

Fernando 2007) employed the CALPUFF/CALMET/MM5 modeling system to simulate 

PM10 dispersion from agricultural fires to investigate local and regional air quality impacts. 

Garcia-Menendez et al. (Garcia-Menendez et al. 2014) showed, by conducting sensitivity 

analyses, that successfully modeling the impacts of fires on air quality with a regional-scale 

chemical transport model (CTM) depends on correctly allocating the fire emissions in 

space and time. Considering that prescribed burning requires the issuance of a permit, it 
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can be managed to minimize the impacts on air quality with the maximum amount of 

burned acres. Balachandran et al. (Balachandran et al. 2017) investigated the sensitivity of 

ambient PM2.5 to various fire weather forecast variables. The results show that prescribed 

burning decisions should be based on the forecasts released the morning of the potential 

burn. Odman et al. (Odman et al. 2018) generated a burn activity forecasting decision tree 

model to estimate prescribed burning emissions and applied it in an air quality forecasting 

system, which also forecasts fire impacts on air quality using the Community Multiscale 

Air Quality (CMAQ) (Byun and Schere 2006a) model and Decoupled Direct Method 

(DDM) (Napelenok et al. 2006), a sensitivity analysis technique for computing sensitivity 

coefficients simultaneously while air pollutant concentrations are computed. This air 

quality forecasting system (HiRes2) (Hu et al. 2015; Odman et al. 2018) currently serves 

most areas in the southeastern U.S. to forecast primary and secondary air pollutant 

concentrations (PM2.5 and O3) one day in advance. The system could help land managers 

and allow air quality managers to consider the impacts of burns when predicting the Air 

Quality Index (AQI) for the next day. Permits may be restricted when an exceedance is 

imminent and applications that cannot be accommodated on that day may be rescheduled 

for a future date to burn under more favorable meteorological conditions. 

The output prescribed fire impact from the HiRes2 forecasting system is the 

combined impact of all the fires in the domain. When there are too many fires close to each 

other, it is difficult to distinguish which fires have a larger impact; therefore, it is not always 

possible to determine where to issue fewer permits to avoid air quality issues. Considering 

there are hundreds of burns in a state like Florida or Georgia every day during the burning 

season, computing the impact of every single burn with CMAQ-DDM would require 
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massive computational resources. A more practical approach is needed for use by the state 

agencies in their daily prescribed burn permitting operations.  

In this paper, we will describe an efficient method to split the total prescribed fire 

impact from CMAQ-DDM into individual burn impacts by incorporating dispersion 

modeling. The method will be applied to the simulation of forecast prescribed burn impacts 

in South Georgia. The results will be evaluated by comparing the apportioned impacts with 

single burn impacts simulated by CMAQ-DDM directly. Individual burn impacts obtained 

by apportioning the combined burn impacts from CMAQ-DDM could help local land and 

air quality managers to decide which burns should be allowed based on the magnitudes of 

adverse effects on public health or air quality in areas of concern. The apportionment 

method is general and can be applied to emission sources other than the fires. 

3.2 Method 

We developed a new method to split the impact of a source group into its 

constituents: Dispersive Apportionment of Source Impacts (DASI). The source group may 

be an entire emission sector (e.g., EGU sector), an ensemble of sources with specific 

characteristics (e.g., coal-fired power plants (CFPPs)) or simply a cluster of emission 

sources in a geographic area (e.g., CFPPs in Georgia). In each case, the source group 

consists of individual sources with a specific address, unique properties, and different 

emissions. Chemical transport modeling with Eulerian grid models starts with the 

processing of emissions from these individual sources. During the gridding process, 

individual source emissions are mixed with emissions from other sources in the same grid 
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cell. The air pollutant concentration fields produced by the chemical transport models 

(CTMs) are the combined result of all the emissions sources. 

When CTMs are used for the design of emissions control strategy design, the 

desired output is the contribution of individual sources or groups of sources to air pollution 

levels. Quantitative information on the contributions of the sources can help determine the 

level of control required to achieve the desired air quality. The use of Eulerian grid CTMs 

for the analysis of single source impacts is not very common (Bergin et al. 2008); typically, 

they are used for the analysis of the impacts from a source group. Eulerian grid CTMs such 

as CMAQ and CAMx (Environ 2016) are equipped with several tools for these kinds of 

analyses. For example, DDM calculates the sensitivities of pollutant concentrations to 

changes in emissions from user-specified sources as derivatives of concentration fields 

with respect to emissions (Napelenok et al. 2006). These sensitivities can be converted to 

contributions using Taylor series expansion (Hakami et al. 2003). Source apportionment 

tools such as OSAT (Dunker* et al. 2002) and PSAT (Wagstrom et al. 2008) calculate the 

contributions more directly but by compromising some accuracy. In the absence of such 

methods in a Eulerian grid CTM, one can always employ the brute-force method by 

conducting a second simulation with reduced or zeroed-out emissions from a source group. 

The difference between the base case results and reduced (or zeroed-out) emission 

simulation can be attributed to that source group as its contribution to the air pollution 

levels (Odman et al. 2019).  

The time required for the computation of source contributions with the above 

methods and the associated cost can be very large, especially for the brute-force method. 

The brute-force method is the most time consuming and most expensive method. Although 
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DDM and source apportionment were developed to shorten the computation time and lower 

the cost, they can be restrictive for analyzing a large number of individual sources. It is for 

this reason that source impacts are almost never analyzed at the individual source level for 

all the sources. DASI is designed to work for a large number of individual sources. The 

idea behind DASI is to split the impact of a source group computed with Eulerian grid 

chemical transport modeling into the impacts of individual sources via dispersion 

modeling. The computations of dispersion models such as Gaussian plume and Lagrangian 

puff or particle models are far less involved than those of Eulerian grid CTMs since they 

do not include detailed atmospheric chemistry. Therefore, it is feasible to execute these 

dispersion models for a large number of individual sources in a short amount of time at a 

very low cost. The pollutant concentration fields predicted by dispersion models downwind 

of each individual source can then be used together to apportion the total impact of the 

source group as predicted by the Eulerian CTM. 

3.2.1 DASI Equations  

3.2.1.1 Splitting source-group impact from Eulerian CTM using dispersion modeling 

The individual impact of source 𝑝 is obtained from the total impact of the source-

group as follows: 

 𝑠𝑖,𝑗
𝑝

=
𝑚𝑖,𝑗

𝑝

∑ 𝑚
𝑖,𝑗
𝑝𝑁

𝑝=1
× 𝑆𝑖,𝑗. (1) 

Here, 

𝑠𝑝 is the individual impact of source p as vertical column mass of pollutant (in µg), 
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𝑚𝑝 is the vertical column mass of pollutant from dispersion modeling of source p 

(in µg), 

S is the source-group impact from Eulerian CTM as vertical column mass of 

pollutant (in µg), 

i and j are the horizontal column and row indices for the vertical column, and 

N is the number of individual sources in the group. 

The reason for using vertical column totals is that there is usually a large difference 

between the vertical distributions of pollutants in Eulerian CTM and Gaussian/Lagrangian 

dispersion models as will be shown later. The vertical column totals, as the mass of 

pollutant, are calculated from grid concentrations as follows:  

 𝑆𝑖,𝑗 = ∑ 𝐶𝑖,𝑗,𝑘 × 𝐴𝑖,𝑗 × ∆𝐻𝑘
𝐾
𝑘=1  (2) 

 𝑚𝑖,𝑗
𝑝 =  ∑ 𝑞𝑖,𝑗,𝑘

𝑝 × 𝐴𝑖,𝑗 × ∆ℎ𝑘
𝐿
𝑘=1  (3) 

Here,  

𝐶 is the source-group impact (as pollutant concentration) from Eulerian CTM (in 

µg/m3), 

𝑞𝑝is the pollutant concentration from dispersion modeling of individual source p 

(in µg/m3), 

𝐴 is the grid cell area in Eulerian CTM (in m2), 



38 

∆𝐻 is the layer height in Eulerian CTM (in m), 

∆ℎ is the layer height in Gaussian/Lagrangian dispersion model (in m), 

k is the layer index, and 

K and L are the number of vertical layers in Eulerian CTM and 

Gaussian/Lagrangian dispersion model, respectively. 

Note that the vertical column pollutant mass from the dispersion model is summed 

over the Eulerian CTM grid-cell area in Equation 3. Typically, the horizontal grid used in 

the dispersion model is different and of finer resolution than the one in the Eulerian CTM. 

This necessitates mapping of the concentration field from the dispersion model’s horizontal 

grid to the Eulerian CTM’s grid. We find all the dispersion grids which is finer (e.g. 1km, 

500m) that located in one Eulerian CTM grid (e.g. 4km) and sum up the mass of those 

dispersion grids to get the mass of that one Eulerian CTM gird. In general, the vertical layer 

structures of the dispersion model and Eulerian CTM are also different. Note that once the 

dispersion model’s concentration field is mapped onto the Eulerian CTM’s horizontal grid, 

all that needed is to sum up the pollutant mass (or impact as mass) layer-by-layer for each 

model’s vertical columns. This is why the upper limits of summations, K and L, are 

different in Equations 2 and 3. It is not necessary to go all the way to the top layers of the 

models, as long as the upper limit layers extend to heights greater than plume heights in 

each model, which may be different from each other. 

3.2.1.2 Matching the horizontal plume extents 
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Just like the possibility of the vertical extents of the plumes for the same individual 

source being different in the dispersion model and the Eulerian CTM, the horizontal extents 

can also be different. In that case ∑ 𝑚𝑖,𝑗  
𝑝𝑁

𝑝=1 in Equation 1 can be zero for certain i, j for 

which 𝑆𝑖,𝑗 is non-zero. Since this would lead to a division by zero, to make Equation 1 

usable, it is necessary to match the horizontal extent of the plume in the dispersion model 

with the one in the Eulerian CTM. This can be achieved by applying artificial diffusion to 

the column mass fields obtained from the dispersion model. The following equation is 

applied iteratively to all 𝑚𝑖,𝑗
𝑝  until no ∑ 𝑚𝑖,𝑗  

𝑝𝑁
𝑝=1  is zero for non-zero 𝑆𝑖,𝑗: 

 𝑚𝑖,𝑗
𝑝 ∗

= 𝑚𝑖,𝑗
𝑝 + 𝐷(𝑚𝑖−1,𝑗

𝑝 + 𝑚𝑖,𝑗−1
𝑝 − 4𝑚𝑖,𝑗

𝑝 + 𝑚𝑖,𝑗+1
𝑝 + 𝑚𝑖+1,𝑗

𝑝 ). (4) 

Here, 

D is non-dimensional artificial diffusion coefficient. 

We recommend a value of 0.1 for D, which achieved the non-zero condition in less 

than six iterations in the test case described below. The 𝑚𝑖,𝑗
∗  obtained from the last iteration 

can be safely used in Equation 1 to split the source group impact 𝑆𝑖,𝑗. 

3.2.1.3 Extracting ground layer concentration from split total vertical column mass of 

single fire 

The column total impact of source p, 𝑠𝑝, is distributed to vertical layers k by 

assuming that it has the same vertical profile as the source-group impact, S, at column i, j. 

First a mass ratio, R, for layer k is defined as 
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 𝑅𝑖,𝑗,𝑘 =
𝐶𝑖,𝑗,𝑘×𝐴𝑖,𝑗×∆𝐻𝑘

 𝑆𝑖,𝑗
. (5) 

Then, this ratio is applied to 𝑠𝑝 to get the impact of individual source p for layer k 

(as pollutant concentration):  

 𝑐𝑖,𝑗,𝑘
𝑝 =

𝑅𝑖,𝑗,𝑘

𝐴𝑖,𝑗×∆𝐻𝑘
 × 𝑠𝑖,𝑗

𝑝
. (6) 

Here, 

𝑐𝑝 is the impact (as pollutant concentration) of individual source p (in µg/m3). 

For the surface layer (k=1), the impact of individual source p is therefore 

 𝑐𝑖,𝑗,1
𝑝 =

𝑅𝑖,𝑗,1

𝐴𝑖,𝑗×∆𝐻1
 × 𝑠𝑖,𝑗

𝑝
. (7) 

3.2.2 Models and modeling domain 

Here, the Eulerian CTM is CMAQ, and the dispersion model is Hybrid Single 

Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler and Hess 1997; 

Draxler and Hess 1998). The emission source group is prescribed fires and each one of the 

fires is an individual source. The source-group impacts are calculated using DDM, which 

is embedded into CMAQ. The prescribed fire emissions are calculated using the BlueSky 

Framework. The modeling domain is the area circumscribed by the black square in Figure 

3-1. We focus on four prescribed fires in South Central Georgia near the Florida border on 

April 27, 2016. One fire is relatively isolated (ID01) while the other three are clustered 

(ID02~ID04) and their plumes are likely to interact under south-southwesterly winds on 
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that day. The burned area in each fire is equal (200 acres or 80 hectares), however, the 

differences in fuel loads lead to different heat fluxes and emissions. 

 

Figure 3-1 Modeling domain (black square) and the locations of the four fires (red 

flame) 

3.2.2.1 Modeling prescribed fire emissions: the BlueSky Framework  

The BlueSky Framework (Larkin et al. 2009) is a smoke modeling framework that 

links a variety of state-of-the-art models of meteorology, fuels, consumption, emissions, 

and air quality to enable simulations of the cumulative smoke impacts from fires. The 

default fuel map is from the Fuel Characteristic Classification System (FCCS) in BlueSky. 

CONSUME model Version 3 has been used to calculate consumption as the default 

pathway in BlueSky. Emissions Production Model (EPM), Fire Emissions Production 

Simulator (FEPS) and First Order Fire Effects Model (FOFEM) are integrated into the 

BlueSky framework to calculate emissions. We assume the fire starts at 11 am (EST) and 

the flaming and smoldering phases continue for six hours.   
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In the process of applying DASI, one must pay attention to how emissions are input 

into the models. It is very important that the same mass of pollutant emitted in the Eulerian 

CTM is injected into the Gaussian/Lagrangian dispersion model. CMAQ emission inputs 

are instantaneous flux values and the model interpolates between two flux values in the 

input file to calculate the emitted pollutant mass for each time step. In contrast, HYSPLIT 

inputs are time-averaged emission fluxes and the model uses the same flux while advancing 

from the time stamped on one flux value to the time on the next one. This difference must 

be kept in mind when preparing the emission inputs for the same models. For example, to 

inject 1 kg of pollutant starting from 10:00 a.m. until 11:00 a.m., the emissions input file 

for CMAQ must have two records: 0 kg/hr for 10:00 a.m. and 2 kg/hr for 11:00 a.m. This 

will inevitably result in an additional emission of 1 kg from 11:00 a.m. to 12:00 p.m. even 

if the emission record for 12:00 p.m. is 0 kg/hr. To match this, the following records must 

be in HYSPLIT’s emissions input file: 1 kg/hr for 10:00 a.m., 1 kg/hr for 11:00 a.m. and 0 

kg/hr for 12:00 p.m.  

3.2.2.2 Meteorology and chemical transport modeling: HiRes2 Air Quality and Source 

Impacts Forecasting System 

HiRes2 is a regional forecasting system that has been in operation since November 

2014 to provide local air quality and source-impact forecasts for the southeast U.S.. The 

system uses the Weather Research and Forecasting model (WRF, version 3.6) for 

forecasting meteorology, the Sparse Matrix Operator Kernel Emissions model (SMOKE) 

for gridded emissions and the Community Multiscale Air Quality model (CMAQ, version 

5.0.2) for chemistry and transport. All non-fire emissions come from 2011 National 

Emission Inventory. The horizontal resolution of HiRes2 over the modeling domain in 
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Figure 3-1 is 4km × 4km. There are 13 vertical layers: 0, 20m, 40m, 81m, 162m, 326m, 

663m, 1053m, 1554m, 3291m, 5485m, 7989m, 11643m, and 20201m. The source-impacts 

of various emission source-groups including prescribed fires are calculated by DDM 

available in CMAQ. We ran CMAQ-DDM with two different emission scenarios. In the 

first scenario, emissions of all fires (ID01-04) are combined together. In the second 

scenario, the model was run separately with the emissions from each individual fire. 

3.2.2.3 Dispersion modeling with HYSPLIT 

Goodrick et al. (Goodrick et al. 2013) reviewed the dispersion models used in 

modeling smoke transport from wildland fires, including Gaussian plume and Lagrangian 

puff or particle models. Puff models provide a significant advantage over Gaussian plume 

models as they can effectively deal with time-varying meteorological conditions and 

complex terrain, two limitations of plume models. HYSPLIT is a Lagrangian puff model 

commonly used to estimate smoke concentrations downwind from fires. Rolph et al. 

(Rolph et al. 2009) developed a smoke forecasting system using HYSPLIT together with 

the BlueSky emission algorithm and the Hazard Mapping System (HMS) satellite analysis. 

The Florida Fire Management Information System (Brenner and Goodrick 2005) also used 

HYSPLIT to estimate smoke plume movement and ground-level impacts on PM2.5 

concentrations. We used the HYSPLIT 4 (Windows version) to simulate the primary PM2.5 

concentration fields downwind from each individual fire. The meteorology inputs are 

derived from the Weather Research and Forecasting model (WRF, version 3.6), which is 

also used in the HiRes2 air quality forecast system for generating meteorological inputs to 

CMAQ. The horizontal grid resolution is 1km × 1km. The vertical height has been 

separated into nine layers: 0, 20m, 40m, 80m, 160m, 320m, 640m, 1000m, 1500m, and 
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2000m. The input emissions come from BlueSky and are the same as the fire emissions 

input to the CMAQ model. The 1km × 1km resolution output concentration fields are 

mapped onto the 4km × 4km CMAQ grid during the application of DASI.  

3.3 Results and Discussion 

3.3.1 BlueSky emissions and plume height 

The hourly emissions (Figure 3-2) shows that even though the burned area is the 

same, the emissions can be different with different fuel loadings and fuel consumptions. 

The plume height (Figure 3-3) of the fires is comparable to those reported in previous 

research (Liu 2014; Davis et al. 2015) with maximum heights between 600m and 1200m.   

Figure 3-2 Hourly PM2.5 emissions from the four burns as estimated by BlueSky 

Figure 3-3 Hourly plume heights of the four burns as estimated by BlueSky 
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3.3.2 Comparison of fire plumes between HYSPLIT and CMAQ-DDM 

We performed a test with fire ID01 to find the difference between the PM2.5 

concentrations predicted by HYSPLIT and the fire impact (as PM2.5 concentration) from 

CMAQ-DDM. In HYSPLIT (Figure 3-4), the highest PM2.5 concentrations in the plume 

are in the upper two layers. However, the CMAQ-DDM result (Figure 3-5) shows that the 

most concentrated layers are near the ground. The vertically integrated mass (Figure 3-6) 

shows that the highest mass grid from HYSPLIT (= 3.7×1012 µg) is a grid close to the fire 

location, while from CMAQ-DDM (= 4.5×1011 µg), the highest mass is found in the grid 

where the fire is located. The difference of vertical distribution and the grid of highest mass 

between HYSPLIT and CMAQ-DDM is mainly because of the difference in the dynamics 

of those two models and because the layer heights from HYSPLIT and CMAQ-DDM are 

different. In order to minimize the effect of the difference between the models, the mass of 

all vertical layers are added together for the following analysis. In the test case (Figure 3-6) 

we also found that there is less dispersion represented in HYSPLIT compared to CMAQ. 

We artificially diffused the HYSPLIT plume using Equation 4 to better match the 

horizontal extent of the fire plume in CMAQ. 
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Figure 3-4 Layer concentrations of PM2.5 for ID01 from HYSPLIT after the first 

hour of the burn (mapped onto the 4km × 4km CMAQ grid) 

Figure 3-5 Layers concentrations of ID01-related PM2.5 from CMAQ-DDM after the 

first hour of the burn 



47 

Figure 3-6 Vertical column mass of PM2.5 for ID01 from HYSPLIT and CMAQ-

DDM after the first hour of the burn 

3.3.3 Comparison between combined fire impact and the sum of single fire impacts from 

CMAQ-DDM 

The fire impact (PM2.5) based on the combined emissions of all three fires (Figure 

3-7a), the sum of the individual impacts of all three fire (Figure 3-7b) and the absolute and 

relative differences (Figure 3-7c and Figure 3-7d) between those two show that the PM2.5 

column total concentration from CMAQ-DDM is nearly linearly correlated with fire 

emissions. The highest concentration grids are 120.56 µg/m3 (a) and 120.48 µg/m3 (b) from 

the two cases. In each case, the highest concentration is from the grid in which ID03 is 

located. The difference between the concentrations from the two runs is less than 1.3 µg/m3 

(5%). The grids with the largest differences are located near fire ID02 and are impacted by 

all three fires. This shows there is little non-linear interaction among the three fire plumes. 

Figure 3-7 Comparison between combined fire impacts and summation of single fire 

impacts and the absolute and relative differences between those two 
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3.3.4 Comparison between apportioned individual fire impact and single fire impact 

from CMAQ-DDM 

The process of splitting the combined fire impacts (Equations 1–3) according to the 

artificially diffused HYSPLIT fields (Equation 4) for fires ID02, 03 and 04 are shown in 

Figure B - 1, Figure B - 3 and Figure B - 5, respectively. The vertical column mass then 

converted to obtain the surface layer concentration according to Equations 5-7. For each 

fire, the highest impacts (as PM2.5 concentration) are in the grid cells either the fire is 

located or the nearby grid cells (Figure B - 2, Figure B - 4 and Figure B - 6; black dot 

represents the fire to split; purple dots represent the other two fires). When comparing the 

split fire impact field with the single fire CMAQ-DDM field, the grid with the highest 

concentration is the same except for ID02. The highest grid-cells concentration are 0.95 

and 0.88 µg/m3 from the split fields for ID02, which are 68% and 46% smaller than the 

concentrations (2.75 and 1.75 µg/m3 respectively) from the single fire CMAQ-DDM 

results. For the other grid cells, the differences are less than 0.5 µg/m3 . For fire ID03 which 

has the largest emissions, the split fields and the single fire CMAQ-DDM fields are similar 

to each other. The highest concentration grid cells are the same for both cases, which are 

23.82 (split) and 24.63 (CMAQ-DDM) µg/m3. The difference between the split result and 

single fire CMAQ-DDM result for each grid is less than 2 µg/m3. The largest difference 

(1.94 µg/m3) is for the grid in which fire ID02 is located, which may be due to a non-linear 

interaction among the fires. For fire ID04, which has similar emissions as fire ID02, the 

differences between the split results and single fire CMAQ-DDM results are small for most 

grids, especially for the grid in which the fire is located. The difference is only 0.007 µg/m3 

(<1%). The largest differences are found in the grids in which the other two fires are 
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located. Even though the three fires have the same area, the difference in emissions results 

in fire ID03 contributing the most to PM2.5 concentration in the combined fields. The split 

fields match well with the single fire CMAQ-DDM fields. The method is efficient, reliable 

and could save lots of computational time.   

Fire ID02 has less PM2.5 emissions and impacts mostly the same grid cells that are 

impacted by another fire with larger emissions (ID03). This causes a larger difference 

between the split fire impact and single CMAQ-DDM fire impact for fire ID02 than for the 

other two fires. The sum of the ground level concentrations from the DASI method is 35% 

smaller than that from the single fire CMAQ-DDM method (Table 3-1). While for fire 

ID03 and ID04, total ground level concentrations from the DASI method are 4% and 3% 

larger than those from the single fire CMAQ-DDM method. For fire ID03, which has the 

largest emissions, the variance of the different fields for the two methods is quite small, 

showing that the method works well for large emission fires. The method also works well 

for fire ID04. Although it has small emissions similar to fire ID02, it doesn’t impact many 

grid cells that are also impacted by the other two fires. 
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Table 3-1 Statistical information of ground layer concentrations from DASI-split impact (SPLIT), single fire impact from 

CMAQ-DDM (Single CMAQ-DDM) and their difference (SPLIT – Single CMAQ-DDM) fields 

 

 

* Diff: difference between DASI-split single fire impact field and CMAQ-DDM single fire impact field. 

Diff (%): Relative difference ((SPLIT-Single)/Single×100%) 

 

  ID02      ID03     ID04   

  SPLIT  

Single 

CMAQ-

DDM 

Diff* 
Diff * 

(%) 
 SPLIT 

Single 

CMAQ-

DDM 

Diff* 
Diff * 

(%) 
 SPLIT  

Single 

CMAQ-

DDM 

Diff* 
Diff * 

(%) 

Sum 4.30 6.58 -2.27 -35%  52.06 49.92 2.15 4%  5.94 5.79 0.15 3% 

Mean 0.12 0.23 -0.06 -49%  1.13 1.22 0.05 -7%  0.20 0.18 0.005 13% 

Variance 0.05 0.34 0.12 -85%   15.60 18.31 0.12 -15%   0.32 0.30 0.01 7% 
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3.4 Conclusions 

Prescribed burning is becoming an increasing PM2.5 source in the southeast U.S. as 

the potential for wildfire increases. We provided a method to help land and air quality 

managers identify the most impactful fires under the current weather conditions with ease. 

The method aims to split the combined impact of a source-group, here prescribed fires, into 

individual source impacts through dispersive apportionment. The CMAQ-DDM calculated 

prescribed fire impact from the HiRes2 Air Quality and Source Impacts Forecasting 

System was efficiently and quickly apportioned to single fire impacts using the HYSPLIT 

dispersion model. The results show that the method performs well both with large and 

small emission fires that do not have too much interaction with other fires. The largest 

inaccuracies with the fire impacts on pollutant concentrations are usually observed in the 

grids cells that contain one of the fires and that are also affected by other fires at the same 

time. Inaccuracies may also be significant at nearby downwind grid cells. 

Current source apportionment methods like receptor modeling methods that are 

based on mass balance analysis do not consider the chemical reactions between species 

which are important and could bring inevitable uncertainty to the results. Other methods 

like sensitivity analysis methods using a chemical transport model (CMAQ-DDM) could 

provide appropriate results but require too many computational resources. Our method 

(DASI) could not only be applied to split the combined fire impacts but could also be used 

to split the impacts on pollutant concentrations from different emission sources with limited 

cost of time and space. 
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CHAPTER 4. APPLICATION AND EVALUATION OF A 

LOW-COST PM SENSOR TO QUANTIFY THE IMPACTS OF 

PRESCRIBED BURNING ON AIR QUALITY IN 

SOUTHWESTERN GEORGIA 

Abstract 

Prescribed burning is a prominent source of PM2.5 in the southeastern U.S. and 

exposure to prescribed fire smoke is a health risk. As the demand for burning increases and 

stricter controls are applied to other pollution sources, prescribed burning emissions will 

be responsible for an increasing fraction of PM2.5 concentrations. In order to quantify the 

effect of prescribed burning on air quality, low-cost PM sensors have been used to measure 

the PM2.5 concentrations in southwestern Georgia. Here, the feasibility of using low-cost 

sensors as a supplemental measurement tool is evaluated by comparing the measured PM2.5 

concentrations with reference instruments (β-attenuation monitors). A chemical transport 

model (Community Multiscale Air Quality (CMAQ)) was also used to simulate the 

contribution of prescribed burning on PM2.5 concentrations using the decoupled direct 

method to understand the impact of prescribed burning on the local air quality and was 

compared to observations using both the low-cost sensors and reference monitoring. The 

results show that the severe impact of prescribed burning on local air quality and public 

health may be missed due to the dearth of regulatory monitoring sites in Southwestern 

Georgia and low-cost PM sensors can be used to detect prescribed fire impacts and provide 

spatial information for integration with air quality models. Further, PM2.5 concentrations in 

Southwestern Georgia are not homogeneous and the spatial variation is not captured even 
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with a 4-km horizontal resolution in air quality model simulations. In the future, 

observations from a dense network of low-cost sensors could be fused with the model 

simulated PM2.5 fields to provide accurate estimates of exposures to smoke from prescribed 

burning.  

4.1 Introduction 

Particulate matter, a major component of air pollution, is associated with increased 

incidences of cardiovascular and respiratory disease (Brook et al. 2004). Over 4 million 

deaths worldwide (8% of total global mortality) were caused by exposure to outdoor PM2.5 

(particulate matter with an aerodynamic diameter less than 2.5 μm) in 2015 (Forouzanfar et 

al. 2016). In the U.S., PM2.5 is the environmental risk factor with the largest health burden 

and 6th largest mortality risk overall (Cohen et al. 2017).  

Wildland fires, including wildfire and prescribed burning, are a major source of 

PM2.5. 30% of PM2.5 emissions in the U.S. comes from wildland fires according to the 2014 

U.S. National Emission Inventory (NEI) (US EPA 2014). Prescribed burning is a land 

management tool practiced to reduce wildfire risks, control pest insects and disease, and 

recycle nutrients back to the soil. 14% of PM2.5 emissions in the U.S. and 24% in the 

southeastern U.S. originate from prescribed burning. Georgia is one of the most active 

prescribed burning states in the Southeastern U.S. with a total burned area around 550,000 

ha in 2016 (Huang et al. 2018b). As stricter controls are applied to other pollution sources, 

prescribed burning emissions will provide an even larger contribution to PM2.5 

concentrations.  
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PM2.5 increases significantly under the influence of fire smoke (Reisen et al. 2011). 

Rappold et al. (2017) found that over 40% of Americans live in areas with a moderate or 

high contribution of wildland fires to ambient PM2.5 concentrations based on model 

simulations. Researchers have also found associations between fire smoke and respiratory 

morbidity (Dennekamp and Abramson 2011), cardiovascular disease (Haikerwal et al. 

2015) and additional premature deaths (Fann et al. 2018). A better understanding of the 

contributions of prescribed burning to air pollution and its impacts on public health is 

important, especially to the local populations affected by prescribed burning directly. Finer 

resolution exposure fields are often generated by fusing observation and model simulation, 

while model simulation provides the spatial information to the fields for health studies 

(Huang et al. 2018a). However, the sparse distribution of monitoring sites limits the 

information available to understand the impact of prescribed burning on local air quality 

and public health at fine scales. Deployment of inexpensive devices to measure ambient 

pollutant concentrations could provide better resolved spatial information to improve the 

accuracy of exposure fields to quantify prescribed burning’s impacts on air quality and 

public health.  

Air pollution sensors that are lower-cost, portable and easy-to-use have been widely 

used as a supplemental tool to measure ambient concentration to provide high  resolution 

data in near real-time (Snyder et al. 2013; Kumar et al. 2015; Jovašević-Stojanović et al. 

2015; Rai et al. 2017). Previous research evaluating different types of low-cost sensors in 

both laboratory and field studies have shown varying performance between the sensor 

measurements and reference instruments (Gao et al. 2015; Johnson et al. 2016; Kelly et al. 

2017; Han et al. 2017; Johnson et al. 2018; Zheng et al. 2018). Gao et al.(2015) tested the 
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performance of a low-cost sensor in high concentration urban environments in Xi’an, 

China. The results show that the low-cost sensor could identify the area with the highest 

average PM2.5 concentration in the study. Lower R2 values were obtained at lower ambient 

concentrations. Han et al. (2017) evaluated a low-cost sensor and compared its 

measurement with a GRIMM Mini Laser Aerosol Spectrometer, Model 11R in an urban 

residential area of Houston, Texas that shows good correlation between those two 

measurements. They also mentioned that RH significantly changes the association between 

the low-cost sensor and the official measurement. Relative humidity (RH) and temperature 

are important in calibration of measurements of the PM concentration. Zheng et al. (2018) 

evaluated a low-cost PM sensor in both low concentration suburban regions (Durham and 

Research Triangle Park, North Carolina) and a high concentration urban location (Kanpur, 

India). Low-cost sensor performance improved as ambient PM2.5 increased. They also 

pointed out that -attenuation monitors (BAM) may not be ideal for testing low-cost PM 

sensors at low concentrations. Although the use of low-cost sensors in the field of wildland 

fire is limited, those studies also show that low-cost sensors have better performance in 

high concentration environments; this is advantageous for measuring PM2.5 concentrations 

impacted by fires. Kelleher et al. (2018) developed a low-cost PM2.5 sampler and evaluated 

its performance as a smoke-monitoring tool during a prescribed burning activity in 

Colorado, from September 8 to 17, 2016. The regression between the low-cost sampler and 

reference instrument (BAM) found good agreement (R2=0.92). Gupta et al.(2018) 

deployed a low-cost air quality monitor network in California to quantify the impact of 

wildfires during October 2017. They also found that low-cost sensors are useful in 

developing statistical models to convert aerosol optical depth into PM2.5. 
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In this paper, we will evaluate the feasibility of a low-cost sensor (Plantower PMS 

3003) by comparing the measured PM2.5 concentration with a reference instrument in 

Southwestern Georgia. We also use a chemical transport model (Community Multiscale 

Air Quality (CMAQ)) to simulate the PM2.5 concentrations and decoupled direct method 

(DDM, a sensitivity analysis technique for computing sensitivity coefficients 

simultaneously while air pollutant concentrations are being computed) to provide added 

information on the impact of prescribed burning on the local air quality. Measurements 

from low-cost sensors provide fine-scale PM2.5 concentrations for evaluating the simulated 

concentrations and to assess how well the model captures PM2.5 concentrations at those 

scales.    

4.2 Materials and methods 

4.2.1 Study Area 

The domain we focus on in this study includes Dougherty, Lee, and Worth Counties 

in southwestern Georgia with a total population of about 150,000 (1.5% of state total 

population) and a total area of 330,000 ha (2.14% of state area). The per capita incomes 

for those counties are $19,210, $23,867 and $18,348 respectively, lower than the national 

per capita income ($27,334) according to 2015 U.S. Census data. Southwestern Georgia is 

one of the most active prescribed burning areas in the U.S.(Huang et al. 2018b). The annual 

total burned area of those three counties was around 30,000 ha in 2016 (5% of state total) 

(Huang et al. 2018b).   

Three low-cost sensors (Plantower PMS 3003, Figure 4-1) were initially deployed 

at three high schools (Dougherty, Lee, and Worth County High Schools (DCHS, LCHS, 
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WCHS)) to measure the local PM2.5 concentrations starting in May 16, 2017 and a fourth 

low-cost sensor was placed next to the state monitoring site (Figure 4-1) on March 14, 

2018. Turner Elementary site (ID 130950007) is a suburban site located at Albany, 

Georgia. It was established in 1991 as part of the Georgia Air Protection Branch Ambient 

Monitoring Program. It only measures PM2.5 with a BAM.  

Figure 4-1 Locations of low-cost sensors and the Georgia Environmental Protection 

Division (EPD) monitor (*Albany in the figures represents the Georgia EPD 

monitor at Turner Elementary School.) 

4.2.2 Low-cost Sensor Configuration 

The low-cost PM sensor used for the field measurements in this study is Plantower 

PMS 3003. Kelly et al. (Kelly et al. 2017) conducted an evaluation of Plantower PMS 3003 

in two locations associated with high levels of PM2.5 ranging up to 700 µg/m3: a controlled 
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wind-tunnel environment and an ambient environment. The study compared the low-cost 

sensor performance with research-grade, light-scattering instruments and found that the 

low-cost PM sensor correlates well with the instruments; however, indicated that additional 

measurements under variable ambient conditions are needed. Zheng et al. (2018) evaluated 

the low-cost sensor (Plantower PMS 3003) in both low concentration suburban regions and 

a high concentration urban location. The measurements were compared against Federal 

Equivalent Methods (FEMs). The low-cost sensor performance was better when ambient 

PM2.5 was higher. 

4.2.2.1 Low-cost Sensor Calibration 

The Plantower PMS 3003 low-cost sensor uses an optical method to measure PM1, 

PM2.5, and PM10. The light emitter is a He-Ne laser and a photodiode perpendicular to the 

light source is used to measure the scattered light. An internal program to the low-cost 

sensor calculates the concentration from the particle number concentration (number of 

pulses in the output waveform of the photodiode signal) and particle size (amplitude of the 

waveform of the photodiode output signal).    

Time-weighted averaging from pre- and post-calibrations of the low-cost sensors 

at an urban background research site (Jefferson Street in Atlanta, Georgia, JST calibration) 

were applied to the raw data from the session to generate calibrated data. The calibrations 

were conducted by co-location with a regulatory instrument (tapered element oscillating 

microbalance (TEOM)). The inlet height of the low-cost sensor was approximately equal 

to the sampling inlet for the TEOM). A relative humidity correction factor (CF) of the 

form: 
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𝐶𝐹 =  𝑎 + 𝑏 ∗
𝑅𝐻2

1−𝑅𝐻 
 (1) 

where a and b are best fit parameters, was used in the calibration and more details 

can be found in Zheng et al (2018).  

There are limitations to using this calibration approach, including different light 

scattering properties of aerosols of different composition and size. Since light scattering 

differs by size and composition of particles it is best to calibrate the low-cost sensor in an 

environment similar to the one where it will be used, i.e., near wildland fire smoke. 

Sometimes, the RH correction calibration may not help. We tried to use the observation 

from EPD site as the referenced PM2.5 and RH data from a nearby site (Southwest Georgia 

Regional Airport) in the National Weather Service (NWS) network to have another 

correction factor. However, there is no obvious correlation between the reference PM2.5 

and RH (Figure C - 1). Therefore, we decided to perform a linear regression calibration 

(Local calibration) between observations from low-cost sensor and the BAM at EPD site 

Figure 4-2 and applied the relationship to all low-cost sensors’ raw data.  

Figure 4-2 Comparison between BAM and low-cost sensor (raw data) collocated at 

the Albany EPD site 
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4.2.3 Air Quality Simulation 

Air quality modeling using CMAQ was conducted for the period March 8 to March 

15, 2018, we focus our analysis on a period capturing the exceedance day (daily PM2.5 

concentration > 35 µg/m3): March 10, 2018. The daily total burn acres in the twelve 

counties surrounding the monitors on that day and the previous day are larger than 7,000 

acres (Figure C - 2, Figure C - 3). Also, from March 13 to March 15, the daily total burn 

acres are larger than 5,000 acres every day. It is possible that those fires had a severe impact 

on air quality but this impact was missed by the observations both by the EPD monitor and 

the low-cost sensors. In order to evaluate the performance of low-cost sensors during the 

exceedance day and the feasibility of chemical transport models to capture the temporal 

and spatial variations of the fire impact, an eight-day period (March 08 – March 15) is 

simulated using Weather Research and Forecasting (WRF; version 3.6), a mesoscale 

numerical weather prediction model, and Community Multiscale Air Quality (CMAQ; 

version 5.0.2), a chemical transport model. CMAQ is equipped with Decoupled Direct 

Method (DDM), a sensitivity analysis technique for computing sensitivity coefficients 

simultaneously while air pollutant concentrations are being computed. CMAQ-DDM is 

used to calculate the impacts of prescribed burning emissions on PM2.5. The prescribed 

burning emissions are calculated by using the BlueSky framework (Larkin et al. 2009) 

according to the burned area information from Georgia Forestry Commission’s (GFC) burn 

permit database. The fuel map in BlueSky is from the Fuel Characteristic Classification 

System (FCCS)(McKenzie et al. 2007). CONSUME model Version 3(Joint Fire Science 

Program 2009) has been used to calculate fuel consumption in BlueSky. All fires are 

assumed to start at 11 a.m. and last 3 hours. The other emission data were processed by 
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Sparse Matrix Operator Kernel Emissions (SMOKE) based on 2011 NEI. The grid used by 

both WRF and CMAQ has a horizontal resolution of 4 km. 

4.3 Results and Discussion 

4.3.1 Comparison of the observations from low-cost sensors and the GA EPD monitor 

The low cost sensors were deployed, and were found to have valid data at the four 

sites for periods of 3 to 12 months (Table 4-1).   

Table 4-1 Low-cost sensor measurement dates 

Low-cost Sensor 

Location 
Measurement Dates 

Dougherty County May 16, 2017 – June 20, 2018 

Worth County May 16, 2017 – May 08, 2018 

Lee County 
May 16, 2017 – July 27, 2017; 

March 14, 2018 – April 20, 2018 

Turner Elementary 

(EPD Albany site) 
March 14, 2018- June 20, 2018 

4.3.1.1 Comparison between low-cost sensors and BAM at the monitoring site using 

different calibration methods 

 Daily PM2.5 observation from GA EPD’s BAM at the Albany site and PM2.5 

concentrations show that the low cost monitor captures the variations in the PM2.5 levels, 

and that the two different calibration methods (Local calibration and JST calibration) has 

significant impact on performance (Figure 4-3). Daily PM2.5 concentrations using JST 

calibration drift much more from BAM observations than those using local calibration. 

Comparison between the observations from the EPD’s BAM observations at Albany site 

and daily PM2.5 measurements by the low-cost sensor at DCHS (0.6 miles away from EPD 
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Albany site) show that local calibration performs better than JST calibration, with a higher 

R2 and same slope ( Figure 4-4). This illustrates that calibration at a distant site, even with 

an RH correction factor, may not improve the low-cost sensor performance due to the 

difference in the composition and level of PM2.5. Because of the better performance 

obtained using local calibration, the following discussion will focus on results obtained 

using the local calibration only. 

Figure 4-3 Daily PM2.5 concentrations from low-cost sensors and BAM at GA EPD 

site (Albany) from March 14, 2018 to June 20, 2018 using different calibration 

methods 

 Figure 4-4 Comparison of the daily PM2.5 concentrations between low-cost sensors 

and BAM at DCSH from May 16, 2017 to June 20, 2018: Local calibration (left), 

JST calibration (right) 
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4.3.1.2 Temporal trend of PM2.5 from low-cost sensors and BAM at the monitoring site 

Most of the hourly PM2.5 concentration peaks detected by the BAM at the GA 

EPD’s Albany site are captured by the low-cost sensors (Figure C - 4). However, low-cost 

sensors are less sensitive to changes in PM2.5 concentrations than BAM due to detection 

limitations and sensitivity issue of the low-cost sensors, and record less variation (standard 

deviation: SD, of ~5 µg/m3, Table 4-2) lower than that of BAM at the monitoring site 

(SD=8.68 µg/m3). Differences in the observed peak levels between the sensors other than 

at the EPD site are likely due to the width of the fire plumes, leading to very heterogeneous 

levels on scale of less than 1 km, and sometimes the plumes would miss some of the sensors 

completely.  The Albany sensor observed very elevated levels from the plume on May 4and 

May 7, 2018, though the observation was less than that observed by the EPD BAM. On 

April 25, there are some high levels (>15 µg/m3) detected by BAM and the Albany sensor 

also observed high concentration during the same periods, but the peak hour from the 

Albany low-cost sensor (9 a.m.) is one hour later than that from BAM (8 a.m.). The peak 

concentration from the low-cost sensor (33 µg/m3) is higher than that from BAM (28 

µg/m3). The low-cost sensors at Albany and DCSH both capture a peak on April 26, 

however, there are no valid values on that day from BAM. Low-cost sensors can provide 

backup capabilities to regulatory monitors.   

Daily trends of PM2.5 concentrations from low-cost sensors and monitoring site 

show that the low-cost sensors did not capture levels as high as the EPD BAM (which 

recorded an exceedance) on March 10, 2018 (50 µg/m3), but the concentration from DCHS, 

the closest low-cost sensor to the GA EPD site at Albany was quite elevated, (33 µg/m3) 
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and is the highest value observed by the low-cost sensors during the measurement period ( 

Figure 4-5). 

 Figure 4-5 Daily PM2.5 concentrations from low-cost sensors and BAM at GA EPD 

site (Albany) from May 16, 2017 to June 20, 2018  

Table 4-2 Mean and standard deviation (Std) of PM2.5 hourly concentrations from 

BAM at the GA EPD monitoring site in Albany and low-cost sensors 

HOURLY 
Albany 

(EPD) 
Dougherty Lee Worth Albany 

Mean (µg/m3) 7.98 6.77 6.00 6.95 7.28 

Std (µg/m3) 8.68 4.83 3.84 5.61 4.98 

4.3.1.3 Comparisons of hourly and daily PM2.5 concentration between low-cost sensors 

and BAM at the monitoring site 

Both Figure C - 5 and  Figure 4-6 demonstrate that low-cost sensors underestimate 

the PM2.5 concentration with respect to the BAM observations at EPD’s monitoring site 

with linear regressions slopes of less than 1. For DCHS, which is the closest low-cost 
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sensor to the monitoring site (0.6 miles), the R2 (= 0.71) and slope (= 0.54) of the linear 

regressions of daily PM2.5 concentration with the BAM observations at the monitoring site 

are the largest among the three low-cost sensors. Lower R2 from Lee and Worth County 

comparisons do not mean those low-cost sensor performances are not good. With 

increasing distance between the low-cost sensors and EPD monitoring site, measured 

concentrations are more likely to reflect impacts from different fire plumes; therefore, those 

lower R2 are expected. They show the spatial variation of fire impact on PM2.5 

concentrations and that a single monitoring site may miss high concentrations in the area. 

 Figure 4-6 Comparison of daily PM2.5 concentrations between high school low-cost 

sensors and BAM at GA EPD site (Albany) from May 16, 2017 to June 20, 2018 

(LCHS sensor was down from July 28, 2017 to March 13, 2018 and April 21, 2018 to 

June 20, 2018; WCHS sensor was down from May 09, 2018 to June 20, 2018) 

Both the hourly and daily PM2.5 concentration regressions between BAM and low-

cost sensor at Albany monitoring site have slopes less than 1 (Figure C - 6). The 

observation from low-cost sensor of PM2.5 concentration is higher than that from BAM 

below 10 µg/m3 and lower for high concentrations. The comparisons between BAM with 

sensors at DCHS and WCHS with a cut-off at 95% of BAM observation (Figure C - 7) 



 67 

shows that almost all the observations from DCHS and WCHS low-cost sensors are under 

the diagonal line. The R2 (= 0.76) of daily comparison between BAM and low-cost sensor 

at Albany site is the largest one among the four low-cost sensors. The R2 between BAM 

and the low-cost sensor at DCHS, WCHS and LCHS are 0.78, 0.47 and 0.64 separately for 

the same period. The decreasing R2 with increasing distance show the spatial variation of 

fire impact that detected by different low-cost sensors, but may missed by the EPD site.  

4.3.1.4 Intercomparison between low-cost sensors 

The R2 values for low-cost sensor intercomparisons are around 0.9 and with slopes 

very close to 1 (Figure C - 8). The increasing R2 when comparing Worth, Lee and 

Dougherty low-cost sensors with the Albany low-cost sensor is a result of the spatial 

variation of the prescribed fire impact on PM2.5 concentrations: WCHS, the farthest low-

cost sensor from GA EPD site at Albany, has the lowest R2 while DCHS, the closest low-

cost sensor, has the highest R2. 

4.3.2 CMAQ-DDM results 

The simulations do not capture the temporal variation of PM2.5 concentrations 

well (Figure 4-7). The high PM2.5 concentrations are mainly from fire impact (DDM 

results). The following discussion will focus on two periods: March 9 to March 10 and 

March 13 to March 14, 2018 to explain why the simulations are not correlated well with 

observations 
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Figure 4-7 Comparison between observed and simulated PM2.5 concentrations, and 

the fire impact at EPD site from March 8 to March 15, 2018 

On March 9, the simulation predicts the peak concentration to be around 85 µg/m3, 

which is in good agreement with the observed peak level, but to occur five hours earlier 

(Figure 4-8). This mismatch in the time of occurrence may be due to actual start time and 

duration of the fires. All the fires were assumed to start at 11 a.m. and last 3 hours in the 

simulation; however, permit records for March 9 show fires approved to start in the 

afternoon and end at night. The actual start time and duration of fires are not known since 

no post-burn information is available. On March 10, the simulation does not capture the 

exceedance. The large difference between the observation and simulation at the beginning 

hours of March 10 may be mainly caused by meteorology. Observed wind speed is zero 

from 12 a.m. to 7 a.m. and 7 p.m. to midnight; however, WRF-simulated wind speed is 

larger than >2 m/s during the same periods (Figure 4-9). A systematic bias that leads to 

overestimated nighttime wind speed was reported in other applications of WRF (Garcia-

Menendez et al. 2013; McNider et al. 2018). The observed peak at 10 a.m. may be caused 

by a new fire starting early and located close to the monitoring site. However, the 
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simulation does not have any fires starting before 11 a.m. and, since the boundary layer is 

changing rapidly at 10 a.m., it is also hard to tell which fire causes the peak. 

Figure 4-8 Comparison between observed and simulated PM2.5 concentrations, and 

the fire impact from March 9 to March 10, 2018 at GA EPD site at Albany 

Figure 4-9 Wind speed from observations (Southwest Georgia Reginal Airport Site: 

KABY) and simulations 

The DCHS and GA EPD site are located in two neighboring grid cells in the model 

simulations. At 6 p.m. on March 9, the simulated concentrations at these two grid cells are 

almost the same (~ 30 µg/m3). However, the observations from the EPD site (80 µg/m3) 

and low-cost sensor (40 µg/m3) are quite different. The simulation does not capture this 

large spatial gradient in PM2.5 concentrations (Figure 4-8, Figure C - 9). On the other hand, 

the peak concentration at the EPD site is detected at 10 a.m., while the peak at DCHS 

occurs at 11 a.m. The transport of smoke plume is detected successfully by the low-cost 

sensor. 
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For the WCHS low-cost sensor, the peak at 1 p.m. (Figure C - 10) is caused by 

medium size fires (51 to 150 acres) to the northwest of the low-cost sensor, marked by the 

orange circles in Figure C - 3 (right). There are some large fires (> 150 acres) to the 

southwest; however, the their smoke plumes move to the southeast under northwesterly 

winds and just miss the EPD site as well as the DCHS low-cost sensor (Figure C - 11) when 

the observations at both locations are quite flat at low concentrations from 11 a.m. to 4 

p.m.. Meanwhile, the southern counties, including Dougherty, are severely affected by 

those large fires as shown in Figure C - 11, but neither the EPD site nor the low-cost sensor 

do not indicate any presence of high PM2.5  concentrations in the area. 

4.4 Conclusions 

The sparsity of air quality monitoring sites limits our ability to understand air 

pollution dynamics, evaluate air quality models, assess potential health impacts of air 

pollution and identify the most effective strategies to improve air quality and protect public 

health.  The shortage of monitoring sites in Southwestern Georgia is of particular 

importance because of the widespread use of prescribed fires and their influence on local 

air quality and public health. As shown here, low-cost PM sensors can be used to detect 

prescribed fire impacts and provide the spatial information that may even be missed by 

model simulations. Further, they can provide back –up for instances when regulatory 

monitors may fail. However, low-cost sensor calibration is important and still needs further 

investigation to answer the question of what the maximum distance of the reference 

monitor to the ultimate low-cost sensor location should be for reliable calibration. 

Calibration at a distant site with a different mix and level of PM2.5 may result in poor low-

cost sensor performance. RH correction factor calibration methods from literature may not 
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help. In our case, i.e., using BAM as a reference monitor, the local calibration method was 

preferred.  

Because of the highly non-homogeneous distribution of PM2.5 concentrations in 

Southwestern Georgia, particularly when fire plumes are present, spatial gradients cannot 

be captured even with 4-km resolution model simulations. 1-km (or finer) resolution 

together with better knowledge of start and end times of the burns are needed to improve 

simulations. However, the accuracy of the fire impact simulation is highly dependent on 

accurately modeling the meteorology. The systematic high bias of wind speed at nighttime 

in the WRF model makes it harder to capture the temporal variation and level of pollution. 

Uncertainties in wind speed and direction limit the accuracy of the simulations. We 

recommend fusing model simulations with observations from a dense network of low-cost 

sensors for accurate estimation of exposures to smoke from prescribed burning. 
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CHAPTER 5. EXPOSURE FIELD MODELING USING AIR 

QUALITY MODEL-DATA FUSION METHODS, AND 

COMPARISON WITH SATELLITE AOD-DERIVED FIELDS: 

APPLICATION OVER NORTH CAROLINA, USA 

As published in Air Quality, Atmosphere and Health 

Abstract 

In order to generate air pollutant exposure fields for health studies, a data fusion 

(DF) approach is developed that combines observations from ambient monitors and 

simulated data from the Community Multiscale Air Quality (CMAQ) model. These 

resulting fields capture the spatiotemporal information provided by the air quality model, 

as well as the finer temporal scale variations from the pollutant observations and decrease 

model biases. Here, the approach is applied to develop daily concentration fields for PM2.5 

total mass, five major particulate species (OC, EC, SO4
2-, NO3

-, and NH4
+), and three 

gaseous pollutants (CO, NOx, NO2) from 2006 to 2008 over North Carolina (USA). Several 

data withholding methods are then conducted to evaluate the data fusion method and the 

results suggest that typical approaches may overestimate the ability of spatiotemporal 

estimation methods to capture pollutant concentrations in areas with limited or no monitors. 

The results show improvements in capturing spatial and temporal variability compared 

with CMAQ results. Evaluation tests for PM2.5 led to an R2 of 0.95 (no withholding) and 

0.82 when using 10% random data withholding. If spatially-based data withholding is used, 

the R2 is 0.73. Comparisons of DF-developed PM2.5 total mass concentration with the 
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spatiotemporal fields derived from two other methods (both use satellite aerosol optical 

depth (AOD) data) find that, in this case, the data-fusion fields have slightly less overall 

error, with an RMSE of 1.28 ug/m3 compared to 3.06 ug/m3 (two-stage statistical model) 

and 2.74 (neural network-based hybrid model). Applying the Integrated Mobile Source 

Indicator (IMSI) method shows that the data fusion fields can be used to estimate mobile 

source impacts. Overall, the growing availability of chemically-detailed air quality model 

fields and the accuracy of the DF field, suggest that this approach is better able to provide 

spatiotemporal pollutant fields for gaseous and speciated particulate pollutants for health 

and planning studies. 

5.1 Introduction 

Exposure to fine particulate air pollution (PM2.5) has been associated with increased 

morbidity and premature mortality, suggesting that sustained reductions in pollution 

exposure could result in improved health and increased life expectancy (Gilboa et al. 2005; 

Sarnat et al. 2005; Pope et al. 2009; Matte et al. 2009; Solomon et al. 2012; Hubbell 2012). 

Estimating population exposure to PM2.5 has traditionally been done by assigning 

measurements of a central ground monitor to people living within the region (Kanaroglou 

et al. 2005; Sampson et al. 2013). However, a number of studies have shown the limitations 

of using central ground monitor data as the exposure metric (Lefohn et al. 1987; Wade et 

al. 2006; Beelen et al. 2009; Kim et al. 2014; Dionisio et al. 2016). These limitations 

include monitoring sites in national regulatory networks that are relatively sparse across 

broad regions of the country (Hu et al. 2014a) and pollutant concentrations that can be 

impacted by local emissions, leading to local variations (Hu et al. 2014b). A variety of 

modeling approaches are now being used to better estimate pollutant concentration 
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variations not captured by monitors (Marmur et al. 2005; Johnson et al. 2010; Liu et al. 

2012).   

One approach to develop air quality fields is using chemical transport models 

(CTMs) that account for local variations affected by emissions and meteorology 

(Godowitch et al. 2015; Kim et al. 2015; Pleim et al. 2016).  The Community Multiscale 

Air Quality (CMAQ (Binkowski 2003; Byun and Schere 2006b) ) model is a state-of-the-

science chemical transport model (CTM) designed to follow the dynamics of air pollutants 

from emissions.  CMAQ captures spatial and temporal variations (Friberg et al. 2016), but 

is subject to errors  due to limitations in insufficient characterization of meteorological (Yu 

et al. 2012) and emission inputs (Gilliland et al. 2008; Xiao et al. 2010; Ivey et al. 2015), 

as well as physical and chemical processes (Carlton et al. 2008; Tang et al. 2011; Ivey et 

al. 2016).    

The objective of this research is to use the data fusion (DF) approach to develop 

spatiotemporal concentration fields for PM2.5 mass, five PM species, and three gases for 

the state of North Carolina to support the University of North Carolina at Chapel Hill’s 

health analysis of coronary heart disease patients in NC (McGuinn et al. 2017). The data 

fusion approach is developed at a spatial resolution of 12 km that combines observations 

from ambient monitors and data from CMAQ to better estimate ground-level air pollutant 

concentration fields for improved exposure estimates (Friberg et al. 2016). Several data 

withholding methods, which involve the use of monitor observations, were used to evaluate 

the stability of the data fusion method. A comparison of total PM2.5 mass concentration is 

made between the results using unadjusted CMAQ pollutant fields, the data fusion 

application, ordinary kriging and two satellite aerosol optical depth (AOD) data-included 
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methods (Hu et al. 2014a; Di et al. 2016). These were compared as a part of evaluating the 

performance of various PM2.5 exposure methods. Exposure fields of five PM species, and 

three gases were also compared between CMAQ results and data fusion method results.  

5.2 Methods 

Four statistical methods were used to create the spatiotemporal fields and the results 

were compared with each other and evaluated against observations. The first statistical 

method used was the data fusion method. The data fusion method combines observations 

and modeled pollutant fields, and was used during 2006-2008 period over North Carolina. 

(The data fusion method was actually applied from 2002 to 2010. 2006-2008 is in the 

middle part of that period and could be representative of the meteorological conditions 

experienced over that time.)  The second and third methods were a two-stage statistical 

model and a neural network-based hybrid model, which both use satellite aerosol optical 

depth (AOD) and other data to develop PM2.5 fields separately. Reliance on AOD data led 

to those methods being applied just to PM2.5 mass, not individual PM or gaseous species.  

The fourth method uses ordinary kriging of observations at monitoring sites and was 

applied to develop PM2.5 and CO fields.  Other pollutants species were monitored at very 

few locations, limiting the amount of information available to develop spatio-temporal 

exposure fields as well as conduct a more thorough evaluation. 

5.2.1 Air Quality Data 
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The observations used for data fusion come from the State and Local Air 

Monitoring Stations (SLAMS), Chemical Speciation Network (CSN) (Chu 2004) and 

Interagency Monitoring of Protected Visual Environments (IMPROVE) (Malm et al. 1994) 

networks. Observations from all available networks are utilized together. Pollutants include 

concentrations of three gases (carbon monoxide (CO), nitrogen dioxide (NO2) and nitrogen 

oxide (NOx)), PM2.5 mass and five PM2.5 components (elemental carbon (EC), organic 

carbon (OC), ammonium (NH4
+), nitrate (NO3

-) and sulfate (SO4
2-)) (Figure 5-1). Because 

of the limited number of monitoring sites for some species (e.g. CO, NO2 and NOx) in NC, 

we also included monitoring sites in neighboring states. 

Figure 5-1 Ambient air quality monitor locations used in this analysis.  (Not all 

monitor locations have all species.) 

Twenty-four-hour average PM2.5 concentrations for years 2006 to 2008 were 

collected from the EPA’s Air Quality System Technology Transfer Network for use in the 
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two-stage statistical model. The MODIS aerosol data (collection 5) at 550 nm wavelength 

were obtained from the NASA Earth Observing System Data Gateway at the Goddard 

Space Flight Center.  

5.2.2 Chemical Transport Model Simulated Concentrations 

Pollutant concentration fields used in this paper are developed using CMAQ model 

version 4.5 at 12-km resolution for the 2006-2008 period over the North Carolina. A 

comprehensive model evaluation (Wyat Appel et al. 2008) of CMAQ version 4.5 

conducted by the U.S. EPA showed that simulated particulate nitrate and ammonium are 

biased high in the fall due to an overestimation of seasonal ammonia emissions (Qin et al. 

2015). The EPA evaluation also found that simulated carbonaceous aerosol concentrations 

are biased low during the late spring and summer due to the lack of some secondary organic 

aerosol (SOA) formation pathways in the model (Jathar et al. 2016; Woody et al. 2016). 

5.2.3 Data Fusion 

The approach used to combine the CMAQ-derived fields with observed pollutant 

concentrations was described in detail in Friberg et al. (Friberg et al. 2016). The method 

blends observations and CMAQ results based on spatial correlation analysis between 

observations and CMAQ simulations and generates a new field that captures local 

observations, as well as spatial variability from CMAQ. A summary is provided in the 

supplemental material. 

Data fusion results were integrated with the Integrated Mobile Source Indicator 

(IMSI) method (Pachon et al. 2012) to estimate the influence of mobile sources on PM2.5. 
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The IMSI method, which is developed for use in air quality and epidemiologic analyses, 

uses EC and NOx as indicators of diesel vehicle (DV), and CO and NOx as indicators of 

gasoline vehicle (GV) impacts. Here, the IMSI method, along with pollutant fields derived 

from the data fusion method, are used to provide spatiotemporal fields of mobile source 

impacts for use in source-specific, multipollutant, health analyses. The method is described 

in detail in the supplemental material. 

5.2.4 Interpolation  

Ordinary kriging (Cressie 1988) was applied to observed PM2.5 and CO to develop 

air quality fields for comparison with the more advanced methods. PM2.5 originates from 

multiple sources, both primary and secondary, whereas CO originates largely from mobile 

sources.  PM2.5 and CO are monitored at more sites than PM species and primary mobile 

source gases. 

5.2.5 Methods Utilizing Satellite Aerosol Optical Depth for PM2.5 Estimation 

5.2.5.1 Two-stage Statistical Model 

A two-stage statistical model (Hu et al. 2014a) employing satellite-retrieved aerosol 

optical depth (AOD) at 10 km resolution from Moderate Resolution Imaging 

SpectroRadiometer (MODIS) was used to develop PM2.5 fields. The grids were restructured 

for comparison at 12 km resolution. The model includes a linear mixed effects module with 

day-specific random intercepts and slopes for AOD and meteorological fields as the first 

stage to account for the day-to-day variability in the PM2.5-AOD relationship. The second 
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stage is a geographically weighted regression model to capture spatial variation. Details of 

the method are found elsewhere (Hu et al. 2014a).  

5.2.5.2 Neural Network-based Hybrid Model 

Di et al. (2016) applied another method that uses a neural network-based, hybrid 

model that includes satellite-based AOD data from MODIS, absorbing aerosol index 

(AAI), chemical transport model (GEOS-Chem) output, land-use terms, and 

meteorological variables. The method has been used to estimate the national PM2.5 fields 

at 1 km × 1 km resolution. Detailed description is found in a previous publication (Di et al. 

2016). We extracted the results for North Carolina for 2006 to 2008. 

5.2.6 Model Evaluation Methods 

The performance of the data fusion method was evaluated by using three data 

withholding methods, as described in following subsections.  

5.2.6.1 Random Data Withholding  

Ten groups of observational data were constructed, each group having 10% of the 

data randomly (not linked to specific monitors) withheld. Each group was run 

independently. Performance was assessed by comparing the simulated values to the data 

that were withheld for that iteration.  

5.2.6.2 Randomly-based Monitor Data Withholding 

Even though the random data withholding method is commonly used, it may 

overestimate the performance of the data fusion method. Monitor-based cross-validation 
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may better reflect performance of the data fusion method because it is representative of 

areas where no monitor is located as opposed to a situation where a measurement is 

missing. In this case, the entire set of 60 PM2.5 monitors were randomly split into ten subsets 

with six monitors in each subset. For each of 10 cross-validation iterations, one subset 

(10% of monitors) was selected as the testing sample and the remaining nine subsets (90% 

of the monitors) were used to reapply the method. Estimates of the withheld monitor values 

were compared with the actual monitor values. This randomly-based monitor data 

withholding was repeated twice to check the stability of this evaluation to the random 

choice of monitor grouping. For NO2 and CO, leave-one-monitor-out (LOO) was applied 

(i.e., in each test only one monitor data has been removed) due to the limited number of 

monitors available in the domain. 

5.2.6.3 Spatially-based Monitor Data Withholding 

Monitors may be clustered such that when one is removed there are nearby monitors 

that lead to the various methods being able to accurately estimate the pollutant levels for 

the removed monitor. This can result in an overestimation of a model’s ability to provide 

accurate concentration estimates in a region with no monitors. Here, the entire set of 

monitors was spatially split into ten subsets (Figure D - 1) according to their locations, and 

withholding was performed with the spatially-based removed subsets. 

5.3 Results and Discussion 

5.3.1 CMAQ  
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As a baseline, the unadjusted CMAQ results are evaluated over the NC domain.  

Annual average PM2.5, concentrations from CMAQ results (Table 5-1) are higher in 2007 

for most species than in 2006 and 2008. For PM2.5, the R2 between pollutant observations 

and CMAQ simulations over the three-year period is 0.32 and a root mean square error 

(RMSE) is 5.16 ug/m3. Linear regression (Figure 5-2, Table 5-2) between pollutant 

observations and CMAQ has a slope of 0.51.  Evaluation results for other species tend to 

be have lower correlations (Table 5-2). 

Figure 5-2 Linear regression between observation (OBS) and simulations (PM2.5)
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Table 5-1 Annual average concentrations from Data Fusion and CMAQ over the NC domain  

Data 

Fusion 

PM2.5 

(ug/m3) 

EC 

(ug/m3) 

OC 

(ug/m3) 

NH4
+ 

(ug/m3) 

NO3
- 

(ug/m3) 

SO4
2- 

(ug/m3) 

NO2 

(ppb) 

NOx 

(ppb) 

CO 

(ppb) 

Monitor # 60 19 19 19 19 19 9 4 14 

2006 11.12±5.09 0.47±0.44 2.03±1.82 1.39±0.75 2.16±2.91 3.91±2.40 9.00±4.30 8.39±14.26 302.14±104.53 

2007 10.78±5.15 0.45±0.36 2.18±1.96 1.37±0.76 0.75±1.03 3.92±2.39 8.80±3.93 6.70±11.64 231.87±79.87 

2008 9.70±4.69 0.31±0.24 1.87±1.81 1.44±0.78 0.47±0.69 3.31±1.85 8.25±3.79 5.28±7.50 279.83±92.97 

CMAQ 
PM2.5 

(ug/m3) 

EC 

(ug/m3) 

OC 

(ug/m3) 

NH4
+ 

(ug/m3) 

NO3
- 

(ug/m3) 

SO4
2- 

(ug/m3) 

NO2 

(ppb) 

NOx 

(ppb) 

CO 

(ppb) 

2006 8.97±5.30 0.33±0.39 1.20±1.25 1.24±0.77 0.86±1.32 3.30±2.07 2.61±2.53 2.80±2.83 163.33±49.28 

2007 9.09±5.62 0.31±0.27 1.51±1.54 1.17±0.73 0.96±1.50 2.79±1.71 3.16±3.06 3.16±3.54 165.48±52.60 

2008 6.90±4.66 0.38±0.33 1.19±1.30 0.79±0.49 0.60±1.04 2.01±1.14 2.81±2.64 3.07±3.09 153.64±49.35 
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Table 5-2 Method Performance Evaluation (CMAQ, DF, DF-WH*) for PM2.5 and PM2.5 species (EC, OC, NH4
+, NO3

- and SO4
2-

) and mobile source related gases NO2, NOx and CO, 24-hour average values 

 * DF-WH: 10% Random data withholding; * NME: Normalized Mean Error.  

SPECIES (# MONITORS) 
PM25 (60) (ug/m3) EC (19) (ug/m3) OC (19) (ug/m3) 

OBS VS Simulations CMAQ DF DF-WH CMAQ DF DF-WH CMAQ DF DF-WH 

BIAS (NME) 0.36 0.10 0.16 0.45 0.30 0.39 0.51 0.24 0.36 

RMSE 5.16 1.28 2.48 0.51 0.35 0.36 2.03 1.06 1.27 

R2 0.32 0.95 0.82 0.28 0.62 0.32 0.26 0.71 0.45 

Linear 

regression 

(𝑦 = 𝛼𝑥 + 𝛽) 

Slope(𝛼) 0.507±0.011 0.864±0.003 0.76±0.002 0.651±0.004 0.811±0.003 0.44±0.01 0.562±0.003 0.892±0.002 0.59±0.01 

Intercept( 𝛽) 5.827±0.163 0.835±0.038 2.05±0.03 0.023±0.001 0.017±0 0.31±0.009 0.038±0.004 0.042±0.003 1.05±0.04 

SPECIES (# MONITORS) NH4 (19) (ug/m3) NO3 (19) (ug/m3) SO4 (19) (ug/m3) 

OBS VS Simulations CMAQ DF DF-WH CMAQ DF DF-WH CMAQ DF DF-WH 

BIAS (NME) 0.37 0.12 0.23 0.96 1.11 1.25 0.34 0.07 0.19 

RMSE 0.74 0.25 0.42 1.15 1.59 1.49 1.86 0.42 0.98 

R2 0.34 0.92 0.67 0.41 0.52 0.40 0.60 0.97 0.82 

Linear 

regression 

(𝑦 = 𝛼𝑥 + 𝛽) 

Slope(𝛼) 0.851±0.003 1.029±0.001 0.72±0.01 1.306±0.008 1.881±0.01 1.62±0.03 0.699±0.002 0.9996±0 0.81±0.006 

Intercept( 𝛽) 0.019±0.002 0.005±0 0.51±0.02 0.013±0.003 0.008±0.004 0.25±0.03 0.05±0.004 0.0084±0.001 0.76±0.03 

SPECIES (# MONITORS) NO2 (9) (ppb) NOx (4) (ppb) CO (14) (ppb) 

OBS VS Simulations CMAQ DF DF-WH CMAQ DF DF-WH CMAQ DF DF-WH 

BIAS (NME) 0.51 0.15 0.27 0.52 2.03 1.88 0.52 0.39 0.47 

RMSE 7.14 2.44 3.16 12.29 49.44 33.17 268.76 231.16 178.04 

R2 0.18 0.81 0.78 0.26 0.76 0.37 0.08 0.26 0.24 

Linear 

regression 

(𝑦 = 𝛼𝑥 + 𝛽) 

Slope(𝛼) 0.573±0.008 0.878±0.003 0.61±0.007 0.496±0.008 3.11±0.022 1.87±0.11 0.368±0.003 0.82±0.005 0.25±0.008 

Intercept( 𝛽) 0.837±0.082 0.483±0.032 3.54±0.08 3.203±0.132 -2.025±0.378 13.36±2.24 63.445±1.087 91.417±1.91 362.75±3.49 
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5.3.2 Data Fusion  

There are decreasing trends in annual average concentration for all species from 

2006 to 2008 in the data fusion results (Table 5-1). The annual average concentrations for 

each species from the DF method are higher than those from the CMAQ results. The 

probability density distributions of all species concentrations are log-normally distributed 

(Figure D - 2).  

Spatial plots of the annual averages for each of the nine pollutants show high 

concentrations in major urban centers (Figure 5-3; Figure D - 3; Figure D - 4). Emission 

impacts are evident near the major interstates in the NO2, NOx and CO fields. 

Concentrations at the western and eastern boundaries are much lower than the other areas 

because these are forest and coastal areas, respectively.  

Figure 5-3 Annual average spatial distributions fields from data fusion, 2008 
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Monthly trends in North Carolina averaged over three years (Figure D - 5) show 

the concentrations of PM2.5 and SO4
2- are higher in the summer and lower in the winter in 

North Carolina, while NO3
-, EC and OC are lower in the summer and higher in the winter. 

Concentrations of CO, NOx and NO2 are higher in the winter and lower in the summer. 

These trends are expected based on the atmospheric formation chemistry of the secondary 

components (i.e., sulfate formed in summer and nitrate in winter) and the mixing height 

(lower in winter) due to meteorological conditions.  

Mobile source impacts are estimated using the IMSI method applied to the DF 

fields. IMSI impacts decrease in the summer and increase in the fall (Figure 5-4). The 

reduction of gasoline vehicle impacts is larger than the reduction of diesel vehicle impacts 

during the summer months.  IMSIGV (emission-based IMSI value for gasoline) and IMSIDV 

(emission-based IMSI value for diesel vehicles) are higher in 2007 than 2006 and 2008 

(Figure D - 6). The elevated impacts areas near highways indicate that the method captures 

mobile source activity and the data fusion fields are trustable (Figure D - 7).  

Figure 5-4 Monthly trends of IMSIEB, IMSIEB, GV and IMSIEB, DV from 2006 to 2008 

(unitless) 

Temporal correlations between IMSI impacts and PM2.5 concentrations indicate 

that highly populated and busy traffic areas have lower temporal correlations than other 

areas (Figure D - 8). The correlations between PM2.5 and EC, CO and NOx are low in rural 

areas (Figure D - 9). The low temporal correlation between PM2.5 and the primary 
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pollutants is because much of the PM2.5 in the area is secondary (Gertler et al.; Gertler 

2005). The annual average spatial correlations between IMSI impacts and PM2.5 

concentrations are 0.72 (2006), 0.71 (2007) and 0.78 (2008). 

Ten percent random data withholding (Figure D - 10) led to a R2 of 0.82 (Figure 

5-2) for PM2.5, 0.24 (Figure D - 11) for CO and 0.78 (Figure D - 12) for NO2. Reapplying 

the method led to very similar correlations (e.g., for PM2.5, the R2 was 0.81). Spatial 10% 

monitor withholding cross-validation (only applied to PM2.5 due to the lack of monitors) 

led to a lower R2 of 0.73 (Figure 5-2). The LOO results for CO and NO2 also have lower 

R2 values than the random data withholding, with a decrease from 0.24 to 0.10 for CO, and 

from 0.78 to 0.52 for NO2. Although there is a small difference in PM2.5 RMSE results of 

approximately 1.20 ug/m3 between the 10% random data withholding results and the 

original DF data sets (Figure D - 13; Table 5-3), both of these values are much smaller than 

the CMAQ RMSE results of 5.16 ug/m3. Spatial distributions of the maximum root-mean-

squared-deviation (mRMSD: The maximum daily root-mean-squared-deviation value 

throughout the whole year.) for PM2.5 show that the largest mRMSD are lower than 2, 

except in northeastern N.C. in 2008 (Figure D - 14; Figure D - 15). The RMSD of spatially-

removed groupings (Figure D - 16) is similar to randomly-removed groupings (Figure D - 

13; Figure D - 14) for PM2.5, except for the northeast area of North Carolina in 2008 

because of the limited monitors in this area (Figure 5-1).  NO2 results are similar, RMSE 

decreases from 7.1 ppb (CMAQ) to 2.4 ppb (data fusion) (Table 5-5). For CO, RMSE 

decreases from 269 ppb (CMAQ) to 231ppb (data fusion) (Table 5-4). RMSEs of LOO 

results for NO2 and CO also show larger increases compared to 10% random data 

withholding results (Table 5-4, Table 5-5). All monitor-based withholding cross-validation 
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for PM2.5, CO and NO2 have larger RMSE and smaller R2 than 10% random data 

withholding results.  

The spatial 10% monitor withholding leads to a lower R2 and higher RMSE for 

PM2.5 as compared to random 10% monitors withholding (Table 5-3) with RMSE increases 

from 2.48 (random) ug/m3 to 2.81 (spatial) ug/m3. When removing values in spatially-

similar groupings, kriging results are minimally impacted by distant observations. As a 

result, the CMAQ simulations are more heavily weighted and the performance of the 

withheld data fusion results worsens. The LOO test for NO2 and CO show the influence of 

the distribution and quantity of the monitoring sites. CO monitors are located mainly in 

urban areas, while NO2 monitors are distributed more widely. There are fewer monitors for 

both NO2 and CO than for PM2.5.  
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Table 5-3 Performance Evaluation for observation (OBS) and simulations (PM2.5) 

using data withholding approaches, 24-hour average values 

* NME: Normalized Mean Error.  

  

  
Mean 

(ug/m3) 

Median 

(ug/m3) 
RMSE NME* R2 

Observations 12.7 11.5 0 0 1 

CMAQ 10.9 9.6 5.16 0.38 0.32 

Data Fusion 11.8 10.8 1.28 0.10 0.95 

DF-10 % Random data withholding 11.8 10.8 2.48 0.16 0.82 

DF-Random 10% monitors 

withholding (First test) 
12.0 11.2 2.37 0.16 0.82 

DF-Random 10% monitors 

withholding (Second test) 
12.3 11.4 2.49 0.17 0.81 

DF-Spatial  10% monitors 

withholding 
12.3 11.5 2.81 0.19 0.73 

Interpolation(Ordinary Kriging) 12.7 11.5 0.67 0.02 0.99 

Ordinary Kriging:  Random 10% 

monitors withholding  (First test) 
12.8 11.6 2.64 0.13 0.83 

Ordinary Kriging:  Random 10% 

monitors withholding  (Second test) 
12.7 11.6 2.74 0.14 0.81 

Ordinary Kriging:  Spatial  10% 

monitors withholding 
12.6 11.5 3.23 0.19 0.71 

Two-stage statistical model (no 

withholding) 
12.8 11.7 3.06 0.15 0.81 

Neural Network-based Hybrid 

Model (no withholding) 
12.2 11.0 2.74 0.15 0.82 
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Table 5-4 Performance Evaluation for observation (OBS) and simulations (CO),24-

hour average values 

  

 

 

 

 

 * NME: Normalized Mean Error.  

 Table 5-5 Performance Evaluation for observation (OBS) and simulations (NO2), 

24-hour average values 

  

Mean Median 

(ppb) 
RMSE NME* R2 

(ppb) 

OBS 11.0 10.1 0.0 0 1 

CMAQ 7.4 6.0 7.1 0.51 0.18 

Data Fusion 10.3 9.2 2.4 0.15 0.81 

DF-10 % Random data 

withholding 
10.1 9.3 3.2 0.27 0.78 

DF-Leave One-monitor 

Out 
10.3 9.3 3.8 0.27 0.52 

* NME: Normalized Mean Error.  

  

  

Mean Median 

(ppb) 
RMSE NME* R2 

(ppb) 

OBS 388 342 0 0 1 

CMAQ 242 221 269 0.52 0.08 

Data Fusion 461 421 231 0.38 0.26 

DF-10 % Random data 

withholding 
464 431 178 0.47 0.24 

DF-Leave One-monitor 

Out 
461 426 260 0.48 0.10 

Interpolation (Ordinary 

Kriging ) 
391 346 24 0.05 0.99 

Ordinary Kriging:  

Leave One-monitor Out 
394 355 164 0.45 0.13 
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5.3.3 Ordinary Kriging Interpolation  

Annual average PM2.5 and CO spatial plots from kriging are shown in supplemental 

material (Figure D - 17). Linear regression (Figure D - 18; Figure D - 19) between ordinary 

kriging and observations has the highest R2 and slope among all the methods. RMSEs are 

also very small, which are 0.67 ug/m3 and 24 ppb, separately. Such performance is 

expected when using the same data in the application because of the ordinary kriging 

method’s mechanism, so monitor-based data withholding was performed for evaluation. 

The performance using monitor-based withholding for ordinary kriging are similar 

to data fusion results. R2 for monitor-based withholding is larger than 0.70. Results for CO 

are worse than the total data interpolation; R2 decreases from 0.99 (ordinary kriging) to 

0.13 (ordinary kriging LOO) (Figure D - 19).  

5.3.4 Methods using satellite-retrieved AOD for PM2.5  

5.3.4.1 Two-stage Statistical Model  

The R2 between observation and two-stage statistical model results is 0.81 (Table 

5-3) lower than data fusion results (0.95, Table 5-2). The RMSE of two-stage statistical 

model (3.06 ug/m3) is better than CMAQ data RMSE of 5.16 ug/m3 when comparing 

simulated results with observations. A 10-fold cross validation (random data withholding) 

shows the three-year averaged R2 is 0.78 and the averaged RMSE is 3.06 from 2006 to 

2008.  

5.3.4.2 Neural Network-based Hybrid Model  
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The linear regression between neural network-based hybrid model results and 

pollutant observations has an R2 of 0.82 (Figure D - 20). The annual average spatial 

distributions fields (Figure D - 21) show a decreasing trend for PM2.5 concentration from 

2006 to 2008. The fields show that the method is also good at capturing the spatial 

information that urban areas have a high PM2.5 concentration and rural areas have a lower 

concentration. 

5.3.5 Comparison between CMAQ and Data Fusion for all species 

Correlations between 10% random data withholding results and observations are 

higher than CMAQ and observations (Figure D - 10; Figure D - 13; Table 5-2). R2 values 

for PM2.5, EC, OC, NH4
+, NO3

-, SO4
2-, NO2, NOx, and CO between observations and data 

fusion simulations increase compared to the correlations between observations and CMAQ 

simulations. RMSEs decrease and R2 increases for all the species except NO3
- and NOx. 

The R2 between observation and 10% random data withholding for PM2.5 is 0.82. SO4
2- also 

performs very well with a R2 value of 0.82. R2 value between daily CMAQ and data fusion 

results for each grid over the whole year for 2008 show that the highest values correspond 

to the grids that are nearest to monitors for all pollutants (Figure 5-5). R2 values decrease 

as the distance to monitors increase, which indicates the accuracy of this method increases 

with the number of monitors used because of the high dependency on the number and 

locations of monitors to perform the kriging step in the data fusion method. 
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Figure 5-5 R2 values of each grid for 2008 

5.3.6 Comparison between Data Fusion and two-stage statistical model 

The relationship between data fusion and two-stage statistical model results for 

PM2.5 simulations during 2006 to 2008 are calculated using Deming regression (Deming 

1943) to equally weight the two inputs because both data are estimated values from models 

(Figure 5-6).  The grid-by-grid correlations over most of the domain have a value close to 

1; however, the correlations in boundary areas are lower. Both the data fusion and two-

stage statistical model capture the urban area PM2.5 concentrations. Fewer monitors are 

located in the forested areas of NC, so the results from the two methods are not as strongly 

correlated. CMAQ secondary organic carbon formation is typical biased low in forested 

areas (Van Donkelaar et al. 2007; Zhang et al. 2007; Baek et al. 2011), which may 

contribute to low correlations with the two-stage statistical model. The two-stage statistical 

model can overestimate concentrations in the coastal areas of eastern NC (Figure D - 22) 
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because of the high relative humidity in the area, which leads to a bias in estimated PM2.5 

from satellite-retrieved AOD (Liu et al. 2005; Hu et al. 2013). The retrieval quality of the 

MODIS product is sensitive to vegetation cover and has difficulty distinguishing between 

the mixed land and water pixels, a limitation that might also contribute to the 

overestimation of the two-stage model along the coast. Lacking AOD data could be another 

limitation of these AOD-data included methods because of the satellite pattern and cloud 

cover days. 

Figure 5-6 Temporal correlations (R) between data fusion and two-stage statistical 

model from 2006 to 2008 

5.3.7 Comparison between Data Fusion and Hybrid model 

Another comparison is made between the data fusion and Di et al. method (Di et al. 

2016). Temporal Deming regression (Figure 5-7) shows the higher correlation in urban 

areas and lower correlation in the eastern, western boundaries and mid-south areas.  This 

is similar to the comparison of data fusion and the two-stage statistical model results except 

in the mid-south areas, which is a national forest. The difference in annual average 

concentration in coastal areas (Figure D - 21, Figure D - 22, Figure D - 23) illustrate that 

the neural network-based hybrid model could provide more accurate spatial information 

because of the use of AAI and CTM outputs to improve accuracy. 
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Figure 5-7 Temporal correlations (R) between data fusion and Harvard’s hybrid 

method from 2006 to 2008 

5.4 Conclusions 

Application of the data fusion method for primary and secondary pollutants over 

North Carolina demonstrates that the method provides accurate concentration fields, 

especially for PM2.5 total mass, OC, SO4
2-, NH4

+ and NO2, capturing the spatial and 

temporal variations in both gaseous and speciated particulate matter concentrations. 

Capturing these variations is critical for improved estimation of exposures for health 

studies. Cross-validation with 10% random data withholding indicates that the DF results 

have little bias. CMAQ-modeled, non-data fused, concentration fields were subject to 

higher temporally and spatially varying bias and error, and lower correlations. These results 

demonstrate that the data fusion approach, as opposed to using CTM fields directly, should 

be used to provide spatiotemporal exposure fields for health studies that use daily air 

quality metrics. Using the DF method-derived fields to estimate mobile source impacts 

using the IMSI method also found that the results could be used in health studies.  

This study also investigated the use of random data withholding versus withholding 

monitors randomly and based upon spatial clustering. Findings show that the data fusion 

method does provide accurate fields, but random data withholding may overestimate the 

ability of such methods to provide accurate concentration estimates in areas lacking 

monitors. The number and the distribution of monitoring sites affect the accuracy of the 
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data fusion method. The more widely the monitors are distributed, the more stable the data 

fusion method results. Observation availability is an important factor in the application and 

evaluation of the method according to some pollutants’ performances such as CO, NO2 and 

NOx have very few monitors. Moreover, CO monitors are mainly located in urban areas. 

However, this research and previous studies demonstrate the benefits of the method versus 

the use of air quality model fields directly.  

Spatiotemporal PM2.5 fields derived using the CTM-based data fusion method 

compared well to similar fields derived using AOD and another chemical transport model.  

These and prior results suggest that the data fusion method provides a promising approach 

to develop exposure fields for health analysis across both urban and regional scales.  A 

major advantage of CTM-based data fusion methods (which could potentially include the 

hybrid approach) over methods relying mostly on AOD to provide spatial variations is that 

it provides speciated PM2.5 and gaseous pollutant fields.     
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CHAPTER 6. THE IMPACTS OF PRESCRIBED BURNING ON 

AIR QUALITY AND HUMAN HEALTH: APPLICATION TO 

GEORGIA, USA 

Abstract 

Short-term exposure to fire smoke, especially PM2.5, has been associated with 

adverse health effects. In order to quantify the impact of prescribed burning on human 

health, the Environmental Benefits Mapping and Analysis Program – Community Edition 

(BenMAP-CE) has been used. The data fusion method has been applied to generate the 

exposure fields to PM2.5 from prescribed burning during the burn seasons from 2015 to 

2018. A way has been provided to distinguish the days and areas when and where 

prescribed burning has a major impact on local air quality for epidemiological studies to 

explore the relationship between prescribed burning and health effects. The results show a 

strong spatial and temporal variation of prescribed burning impact on health. Although 

southwestern, central, and east-central Georgia have large health impact rates, the number 

of Emergency Room (ER) visits related to asthma is small compared to metropolitan areas. 

Metro Atlanta is the most fire impacted area with largest ER visits due to asthma. 

6.1 Introduction 

Epidemiological studies have shown the associations between short-term PM2.5 

exposure from fires and health endpoints such as mortality, respiratory effects, and 

cardiovascular effects (Rappold et al. 2011; Dohrenwend et al. 2013; Johnston et al. 2014; 

Faustini et al. 2015; Linares et al. 2015; Yao et al. 2016). However, most fire-related health 
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impact studies focus on wildfires. Prescribed burning, another type of biomass burning, 

which is a land management practice used to reduce wildfire risk in the U.S. also has large 

emissions. Such emissions remain one of the largest sources of PM2.5 in the U.S. with an 

estimated 14% of total primary PM2.5 emissions coming from prescribed burning, while 

wildfires  account for 16% (US EPA 2014). This suggests that there is a tradeoff: land 

managers can use prescribed burning to reduce wildfires, and the related exposures, but 

should be mindful of the exposures resulting from prescribed burning as well.  One 

advantage of using prescribed burning in this context is that they can be planned to 

minimize adverse human health impacts.   

Georgia actively uses prescribed burning for land management with an annual 

statewide total burned area over one million acres (Huang et al. 2018b), one of the highest 

rates in the U.S., and an estimated 33% of PM2.5 emissions come from prescribed burning 

(US EPA 2014). Epidemiological studies in Atlanta looking at the relationship between 

source specific PM2.5 exposures and health effects like respiratory disease and 

cardiovascular disease (Sarnat et al. 2008; Darrow et al. 2014; Xiao et al. 2016; Krall et al. 

2017) have found positive associations between same-day PM2.5 concentrations attributed 

to primarily prescribed forest burning with cardiovascular disease-related Emergency 

Room (ER) visits. Krall et al. (2017) also found evidence of positive associations of 

respiratory disease ER visits with biomass burning PM2.5.  

In this paper, we use data fusion (Friberg et al. 2016), a method that merges  air 

quality model simulations with observations from monitoring sites, to provide the PM2.5 

exposure fields in health impact calculations. The Community Multiscale Air Quality 

(CMAQ) model(Byun and Schere 2006a), a chemical transport model, with the Decoupled 
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Direct Method (DDM) for source-specific impact estimation(Dunker 1984) is used to 

generate burn impacts from prescribed burning as a model input. The Environmental 

Benefits Mapping and Analysis Program – Community Edition (BenMAP-CE)(Sacks et 

al. 2018), an open-source computer program that calculates the number and economic 

value of air pollution-related deaths and illnesses is utilized for health impact assessment. 

The health impact from prescribed burning is quantified for GA at a spatial resolution of 4 

km for the first four months of each year from 2015 to 2018, which are the most burn active 

months. 

6.2 Materials and methods 

6.2.1 Burn Impact Exposure fields 

Daily total PM2.5 concentrations at 4 km spatial resolution from 2015 to 2018 for 

the first four months in Georgia is estimated using the approach developed by Friberg et 

al. (Friberg et al. 2016; Huang et al. 2018a) that fuses observations from ambient monitors 

(Figure 6-1) and simulated pollutant concentrations from the Community Multiscale Air 

Quality (CMAQ, v5.0.2) model. The resulting fields capture the spatiotemporal 

information provided by the air quality model, as well as the temporal variations from the 

pollutant observations. This decreases model biases and errors. We applied CMAQ-DDM 

to quantify air quality impacts associated with prescribed burning (Napelenok et al. 2006). 

The ratio of burn impact to total PM2.5 for each day and each grid is applied to data fused 

total PM2.5 fields to generate adjusted burn impact in PM2.5. The adjusted burn impact will 

be compared with monitoring observations using the ratio between adjusted burn impact 

over the observation. The fire emissions are developed using the Bluesky framework 
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(Larkin et al. 2009) with burned area information from the Georgia Forestry Commission’s 

(GFC) burn permit database. All fires are assumed to start at 10 a.m. local time and last 6 

hours according to permit records. Emissions data for other sources such as mobile, 

agriculture, and biogenic emissions were projected from the 2011 NEI to the application 

year. 

 

Figure 6-1 Locations of monitoring sites in Georgia: 2015 (Red stars), 2016 (Yellow 

stars), 2017 (Blue stars), and 2018 (Light green stars) 

6.2.2 Health impact function 

We used BenMAP, with a log-linear relationship between air pollution change and 

health incidence to quantify the health impact from prescribed burning as follows: 

∆𝑌 =  𝑌0(1 − 𝑒−𝛽∆𝑃𝑀) × 𝑃𝑜𝑝    (1) 

where 𝑌0 is the baseline incidence rate for the health endpoint, 𝛽 is the health effect estimate 

from the epidemiological study, ∆𝑃𝑀 is the change in air pollution, and 𝑃𝑜𝑝 is the 
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population exposed to the air pollution. In our case, we focus on the ER visits for asthma 

as the health endpoint. The annual asthma-related ER visit rate for 2014 of Georgia is 

extracted from BenMAP-CE and converted to a daily rate by constructing weights based 

on observed daily ER visits, asthma counts during 2013 (Figure 6-2), as follows: 

𝑤𝑒𝑖𝑔ℎ𝑡(𝑖) =  
𝐸𝑅 𝑣𝑖𝑠𝑖𝑡𝑠, 𝑎𝑠𝑡ℎ𝑚𝑎 𝑐𝑜𝑢𝑛𝑡𝑖

∑ 𝐸𝑅 𝑣𝑖𝑠𝑖𝑡𝑠, 𝑎𝑠𝑡ℎ𝑚𝑎 𝑐𝑜𝑢𝑛𝑡𝑖
365
𝑖=1

 

where 𝐸𝑅 𝑣𝑖𝑠𝑖𝑡𝑠, 𝑎𝑠𝑡ℎ𝑚𝑎 𝑐𝑜𝑢𝑛𝑡𝑖 is the number of ER visits due to asthma on day 𝑖. The 

annual asthma-related ER visit from BenMAP-CE is statewide incidence rate and 

differentiate in age groups with the unit of per 100 person per year. Daily ER visits due to 

asthma in the Atlanta area for the first four months in 2013 has an average of 94.8 with a 

standard deviation of 17.5.  

Figure 6-2 Observed daily ER visits, Asthma in Atlanta area (20 counties included): 

2013 

We used 𝛽 = 0.008, which comes from a wildfire smoke exposure epidemiological 

study (Alman et al. 2016). ∆𝑃𝑀 is the burn impact on total PM2.5 after applying the data 

fusion method. We extracted the population from BenMAP-CE and allocated the 2010 

block-level U.S. Census population to match the 4 km spatial resolution using PopGrid 
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program provided by U.S. EPA (Figure 6-3) (US EPA). The health impact in following 

results part refers to the health impact of asthma-related ER visits. 

 

Figure 6-3 Georgia population (4 km resolution): 2010 U.S. Census (9,687,653) 

6.3 Results and Discussion 

6.3.1 Total PM2.5 concentrations and fire impact exposure fields from CMAQ and data 

fusion (DF) 

There’s no obvious increasing or decreasing trend in average PM2.5 concentrations 

from 2015 to 2018 during the prescribed burning season (Table 6-1). CMAQ simulations 

of total PM2.5 concentrations were biased low compared to observations. Fire impact 

increases since 2016 are due to more area being burned over last three years (Figure 6-4) 

and the larger fuel loads and emissions caused by drought in the southeastern U.S. in the 

fall of 2016 (Park Williams et al. 2017). Spatial plots of the monthly averages for total 

PM2.5 and fire impact (Figure E - 3 ~ Figure E - 6) show that high concentrations in the 
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southwestern and east-central GA are mainly due to the active prescribed burning. January, 

February, and March are more active burn months than April. March is the most active 

burn month accounting for about 40% of the total burned area among the first four months 

(Figure 6-4). 2018 has a total burned area over one million acres for the first four months 

which brings to the largest burn impact over last four years (2015 – 2018).  

Table 6-1 Average total PM2.5 concentrations and burn impacts at monitoring sites 

during the first four months of 2015 – 2018 

 

Figure 6-4 Monthly total burned area from 2015 to 2018, first four months 

Comparisons between observations and CMAQ (Figure E - 1,  

Table 6-2) over four years of daily total PM2.5 concentration during January to April 

have slopes less than 0.5 and R2 range from 0.13 to 0.30. Based on the recommended 

Mean(µg/m3) 2015 2016 2017 2018 

Observation 8.55±4.33 8.34±4.35 8.82±5.31 8.67±4.99 

CMAQ 6.62±4.45 6.13±4.32 6.32±3.99 6.23±4.00 

CMAQ_B* 0.83±2.82 0.76±2.96 0.87±1.62 0.97±2.26 

Data Fusion 8.41±3.81 8.02±3.68 8.74±4.59 8.23±4.19 

DF_B* 0.91±1.97 0.86±1.77 1.06±1.77 1.24±2.42 

*_B: burn impact in PM2.5 

 NRMSE  NME 
 2015 2016 2017 2018  2015 2016 2017 2018 

CMAQ 0.57 0.64 0.59 0.62  0.23 0.26 0.28 0.28 

DF 0.23 0.27 0.24 0.24  0.02 0.04 0.01 0.05 
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performance statistics to assess photochemical model performance (24-hr PM2.5 criteria: R 

(correlation coefficient) >0.4) from Emery et al. (2017), only the R2 of 2016 does not meet 

the criteria. All years’ NMEs meet the criteria (< 50%) and goal (< 35%). Here, the 

selection of statistical goals and criteria was based on regional photochemical grid models 

applications being developed at the time to support U.S. regulatory actions for PM2.5 and 

regional visibility (Emery et al. 2017).  

Table 6-2 Normalized room mean square error (NRMSE) and normalized mean 

error (NME) of CMAQ simulated and data fused daily total PM2.5 concentration 

with respect to observations during the first four months of each year (2015 – 2018) 

 

Comparisons between OBS and DF (Figure E - 2) show improvement after 

applying data fusion method with slopes closer to 1 and R2 increasing to around 0.8. Data 

fusion NRMSEs decrease around 60% compared to CMAQ NRMSEs. NMEs also decrease 

and are closer to zero. All those results show better performance with the application of 

data fusion method. Occasionally simulated daily PM2.5 concentrations from CMAQ are 

larger than the observations. These are due to simulated fire impacts that are not captured 

by the observations at the sparse monitoring sites in the region, leading to large differences 

between the data-fused and original CMAQ results (Figure E - 3 ~ Figure E - 6). This can 

lead to the data fusion process decreasing the modeled impact of fires. We also made a 

comparison between observed daily total PM2.5 and ratio of adjusted burn impact to 

observed PM2.5 (Figure 6-5 and Table 6-3). The grey dash lines represent 95 percentile of 

 NRMSE  NME 
 2015 2016 2017 2018  2015 2016 2017 2018 

CMAQ 0.57 0.64 0.59 0.62  0.23 0.26 0.28 0.28 

DF 0.23 0.27 0.24 0.24  0.02 0.04 0.01 0.05 
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observation (vertical) and 30% ratio of fire impact to observed PM2.5. The reason we chose 

30% here is because 33% of PM2.5 emissions come from prescribed burning in Georgia. 

Red dots are the days with high observed concentrations due to fire impacts as determined 

using model results. Epidemiological studies could focus on those days to find the 

relationship between short-term high-level PM2.5 exposure due to fire impact and health 

effects over a series of single-day lags. Blue dots are the days that the fire impact is still 

the major source of total PM2.5. However, due to the low observed PM2.5 concentrations, 

those days may not arise people’s attention but could cause health impact from exposure 

to fire smoke and are also worth investigating. Green dots are the days that are affected by 

fires but also other sources at the same time. Nearly 13% of observations in 2018 are 

dominated by prescribed fires, somewhat larger than previous years. 

    

Figure 6-5 Comparison between daily total PM2.5 observations (OBS) and ratios of 

adjusted fire impact to OBS from 2015 to 2018, first four months 

Table 6-3 Numbers of days in each quadrant in Figure 6-5 

 2015 2016 2017 2018 

Total  2069 2136 1565 1762 

High fire impact / High PM2.5 27 14 18 36 

High fire impact / Low PM2.5 141 124 133 192 

Low fire impact / High PM2.5 75 93 60 52 

Low fire impact / Low PM2.5 1826 1905 1354 1482 
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6.3.2 Health impact from prescribed burning 

Monthly average asthma-related ER visits health impacts from prescribed fire from 

2015 to 2018 show spatial and temporal variation (Figure 6-6). Southwestern, central and 

east-central GA have large health impacts due to the intense prescribed burning activity. 

Macon Metropolitan Statistical Area (MSA) (Bibb County), Albany MSA (Dougherty 

County), Augusta MSA (Columbia and Richmond County), Warner Robins MSA 

(Houston County), Valdosta MSA (Lowndes County), and Columbus MSA (Muscogee 

County) have larger health impacts in terms of absolute numbers due to both a large 

population and high level of fire impact. Although the prescribed burning does not have 

that much impact on Atlanta MSA as air quality (Figure E - 3 ~ Figure E - 6), the large 

population still leads to a large health impact. January, February, and March experience 

the larger health impacts due to more active prescribed burning (Figure 6-4). Typically, 

April is not an active burn month, however, 2018 April had more burns in April than 

February in the central and east-central GA, and those affected Atlanta MSA’s air quality. 

2015 April also had more burns in southern GA, though larger impacts were limited to less 

populated regions.  
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2015 2016 

  

2017 2018 

  

Figure 6-6 Monthly average asthma-related ER visits health impact from prescribed 

fire from 2015 to 2018, first four months 
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Daily health impact for each year (Figure 6-7) and four years together (Figure 6-8) 

for each of the four months separately show that February and March have large health 

impact than January with higher daily average health impact. The health impact from first 

three months has larger temporal variation over the years than April with larger 

interquartile range (IQR). There is a slightly increasing trend of daily average health impact 

from 2016 to 2018. The temporal variation of January among four years is similar to the 

four months total temporal variation. February in 2017 has larger daily health impact 

compared to the other years due to larger emissions from drought season. 2018 April also 

has larger daily health impact with more burned areas compared to previous years indicate 

that the burn season may extend with the need to burn more areas. 

Figure 6-7 Daily asthma-related ER visits health impacts for each year (2015 – 

2018), each month (January – April) The central mark indicates the median, the 

point indicates the mean, and the bottom and top edges of the box indicate the 25th 

and 75th percentiles, respectively. 
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Figure 6-8 Daily asthma-related ER visits health impacts from prescribed fire for 

2015 to 2018, first four months. The central mark indicates the median, the point 

indicates the mean, and the bottom and top edges of the box indicate the 25th and 

75th percentiles, respectively. 

The total health impacts increase from 2016 to 2018 (Figure 6-9) as the prescribed 

burning season appears to be getting longer (Figure 6-4). April used to be a less health 

impacted month compared to first three months, but in 2018 the total health impact of April 

doubling compared to previous years. Although, the burned area in 2015 and 2018 

February is about 60% of that in March (Figure 6-4), the total health impact of those two 

months in each of the two years is similar (Figure 6-9). This result indicates that there are 

more populated areas (Atlanta MSA and Augusta MSA) affected by prescribed burning in 

February in those two years than March. 2017 February has the largest health impacts 

across the reporting years with about 17,000 ER visits due to asthma, a rate of 17 per 10,000 

people. There is less difference of total health impact among different months in 2018 

compared to previous years. There are about 40,000 ER visits due to asthma, a rate of 41 

per 10,000 people in 2015 during the first four months. The number increases about 20% 

in 2018 compared to 2015. Total number of ER visits increases about 14% from 2016 to 
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2017, especially for the first two months in 2017 with increases of about 13% and 76% 

respectively. The number of 2018 April ER visits is 10,372, increases over 60% compared 

to 2015 (6393) and 88% compared to 2016 (5508) and 2017 (5524).  

 

Figure 6-9 Total asthma-related ER visits health impact from prescribed fire from 

2015 to 2018, first four months in Georgia 

Table 6-4 Monthly total ER visits due to asthma in Georgia 

 January February March April Total 

2015 9923 12305 11153 6393 39774 

2016 9345 9646 12916 5508 37414 

2017 10606 16941 9734 5524 42806 

2018 11522 11546 13730 10372 47171 

Fulton County has the largest health impact due to the largest population (Figure 

6-10). There are 264 ER visits due to asthma, a rate of 28 per 100,000 in 2015 during the 

burn season. The number increases about 31% to 344 in 2018. Gwinnett, DeKalb and Cobb 

Counties, all within the Atlanta MSA, are the other three counties that have over 100 people 

visit ER because of asthma issue during the burn season every year (Figure 6-11) with the 
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rate over 20 per 100,000. Although Dougherty County has the largest health impact in the 

southwestern GA, due to the small amount of population, with an average about 10 people 

visit the ER related to asthma during the burn season for the four years (2015 – 2018). The 

spatial distribution of asthma-related ER visits is similar to the observation from Georgia 

Department of Public Health for 2014 (Figure E - 7).Atlanta MSA has the most amount of 

people visit ER due to asthma caused by burn impact.  

 

Figure 6-10 Asthma-related ER visits health impacts by county in Georgia from 

2015 to 2018, first four months (per 100 people) 
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Figure 6-11 Asthma-related ER visits by county in Georgia from 2015 to 2018, first 

four months  

6.4 Conclusions 

Application of the data fusion method to adjust fire impacts improve exposure 

fields for health analysis. However, the lack of observations sites can lead to missing the 

major fire impacts on air quality, though this is captured in the simulation. Fusing the two 

can lead to overly reduced fire impact estimates, though the smoke plume is still captured. 

The lack of monitoring sites can be alleviated, in part, by using inexpensive sensors. Using 

adjusted fire impact which comes from the data fused exposure fields that multiplies the 

ratio between fire impact and total PM2.5 from CMAQ-DDM to compare with observations 

could help researchers target the day and area that prescribed fire has a major impact on 

the local air quality even if the observation is low and also distinguish those days from the 

other days when fire impact is low. Those days and areas should be investigated further in 
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epidemiological studies to find the relationship between health effects and prescribed 

burning.     

Here we used the 𝛽 from a wildfire epidemiological studies. Lacking 

epidemiological studies to provide prescribed burning-specific concentration-response 

functions (𝛽′𝑠) is a weakness of this health analysis. However, according to the health 

impact function, changing of 𝛽 would only change the level of health impact and the exact 

number of prescribed burning impact people, the spatial and temporal variations of 

prescribed burning on public would not change. The variations of prescribed burning 

activity leads to the monthly and locations differences on health impact. Those results 

illustrate that it is important to distinguish seasons and areas when studying prescribed 

burning and its health impacts. While southern Georgia has the higher density of prescribed 

burning, the greatest health impacts, in terms of absolute number of asthma-related ER 

visits, are found in the southwestern, central, and east-central Georgia, as well as the 

Atlanta MSA, given the large populations along with moderate or high levels of prescribed 

burning impacts. Atlanta MSA is the most fire impacted area with largest number of ER 

visits due to the large population here. Although southwestern, central, and east-central 

Georgia have large health impacts, the number of ER visits related to asthma is small 

compared to Atlanta MSA.  

Prescribed burning and wildfire impacts will become an increasing fraction of 

PM2.5 exposures in the future as controls continue to reduce other sources, and these two 

sources are expected to increase. Here we found an increasing trend in health impact due 

to prescribed burning. Strategic use of prescribed burning, however, can be used to reduce 

human exposures by conducting prescribed burnings on days leading to lower exposures 
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and also reduce wildfire-related exposures. Not only Georgia but the entire southeastern 

U.S. that houses some of the most vulnerable communities in the nation, is more likely to 

experience high and frequent smoke exposure in comparison to the other parts of the 

country due to increasing prescribed burning emissions. A better understanding of the 

contributions of prescribed burning to human health is important, especially to the people 

who are affected by prescribed burning directly.  

6.5 Acknowledgment 

This publication was made possible in part by funding from the Joint Fire Science 

Program under grant number 16-1-08-1 and NASA Applied Sciences Program under grant 

number NNX16AQ29G. Its contents are solely the responsibility of the grantee and do not 

necessarily represent the official views of the supporting agencies. Further, the US 

Government does not endorse the purchase of any commercial products or services 

mentioned in the publication. We thank everyone who helped us with the data, in particular: 

  Mr. Michel Klein, Drs Stefanie Sarnat and Paige Tolbert of Emory University for 

providing ER visits data. 

  



 116 

CHAPTER 7. CONCLUSION AND FUTURE WORK 

7.1 Conclusions 

The findings in this dissertation from previous chapters help us better understand 

the impact of prescribed burning and its impact on air quality and human health, and they 

are summarized below. 

We found the limitations of current satellite-derived products in estimating burned 

areas of small fires like prescribed burning by comparing them with permit record datasets. 

Satellite-derived products have coarse resolution relative to the size of prescribed burning. 

They can capture the spatial variation of the prescribed burning activity at county level, but 

not the level of burns. Clustered fires are easier to detect than an isolated one. However, 

satellite may misinterpret those small fires as a combined large fire. Those products need 

to improve the inaccuracy in detecting small fires by incorporating new technologies, like 

newly launched satellites with finer spatial and temporal resolution and algorithms used in 

calculating the burned area. Due to the uncertainty in satellite-derived products, emission 

inventories and other research that use the burned area data as input should adjust them 

accordingly if they focus on small fires.  

A novel source apportionment method (DASI) is developed and applied to split 

combined prescribed burning impact obtained from the model simulation. The application 

of the method to get the single fire impact could help land and air quality managers quickly 

decide whether the burn permits should be restricted or if more permits could be issued. 

The method could also be applied to source apportionment of other emission sectors by 
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splitting the pollutant concentrations generated by the chemical transport model. 

Considering the uncertainties of current source apportionment methods based on mass 

balance, which do not take the chemical reactions into account, and the computational time 

and space the chemical transport models may use, our method provides a more efficient 

way to conduct source apportionment with less uncertainty compared to receptor modeling 

methods. However, more applications are needed to compare the results with other source 

apportionment methods to evaluate the new method.  

The feasibility of a low-cost PM sensor to detect fire impact has also been 

evaluated. Low-cost sensors have the advantage of being lower cost, portable, and easy-to-

use. They can be used as a supplemental tool to measure ambient concentration in areas 

lacking regulatory monitors. Four low-cost PM sensors have been deployed in 

southwestern Georgia, one of the most active prescribed burned area in the southeastern 

U.S., from May 2017 to June 2018. We found that the low-cost PM sensor we utilized 

could be used to detect fire impact. They can provide back-up measurements when 

regulatory monitors stop working. They can also capture the fire impact missed by the 

single monitoring site nearby, according to model simulation analysis. However, due to the 

highly non-homogeneous distribution of PM2.5 concentrations from fire impact, spatial 

variations cannot be captured even with a 4-km resolution simulation. Uncertainties in 

wind speed due to a systematic bias at nighttime in the WRF model and wind direction will 

also limit the accuracy of the simulations. Therefore, in order to generate a more accurate 

estimation of pollutant exposure fields to prescribed burning, we recommend fusing 

observations from a dense network of low-cost sensors and model simulations using the 

data fusion method. 
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The data fusion method has been applied from 2006 to 2008 over North Carolina 

to develop the spatiotemporal fields of PM2.5 and its species and gaseous pollutant 

concentration fields as well. The method fuses observations from monitor sites and 

Community Multiscale Air Quality (CMAQ) model pollutants fields to generate air 

pollutant exposure fields for health studies. The optimized fields resemble the CMAQ-

observation fields near the monitor sites and the scaled CMAQ fields far from the monitor 

sites. The final outputs are consistent with the observation variations and capture spatial 

information by the air quality model. Inter-comparison of PM2.5 exposure fields using data 

fusion and two other methods including satellite-derived AOD data show that the data 

fusion method provides the strongest correlation and lowest errors in this study. However, 

as each method has its own pros and cons, we should choose them according to different 

situations as appropriate.  

The data fusion method has also been used to generate exposure fields from 

prescribed burning impact for the first four months from 2015 to 2018 in Georgia for 

quantifying the health impact due to the fires. We provided a way to choose the days and 

areas that prescribed burning has a major impact on the local air quality which is important 

for epidemiological studies to explore the relationship between prescribed burning and 

health effects. The health impacts results show a strong spatial and temporal variation of 

prescribed burning. However, lacking epidemiological studies for prescribed burn smoke 

to provide the coefficient 𝛽 that coming from the concentration-response function may 

weaken our health analysis. Further health studies are needed to investigate the impact of 

prescribed burning on human health. 
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7.2 Future work 

This dissertation has provided a basic understanding of how prescribed burning 

affects air quality and human health by using measurements and model simulations and 

could be treated as a foundation for additional studies in the areas of prescribed burning 

and source apportionment.  

Unlike Georgia and Florida, which have relatively complete prescribed burning 

permit records in their system, there are some active prescribed burning states that do not 

have this kind of system. The permit records themselves also have uncertainty. It would be 

useful to be able to use satellite-derived estimates more widely, particularly in areas that 

do not have systems that are as extensive or as available as Florida and Georgia. Statistical 

and machine learning methods (e.g. logistic regression model, Bayesian method, random 

forest) could be used to calibrate the current satellite-derived product. Taking Georgia as 

the test state which has longer (2013 to 2018) permit records, we can use the first five years 

(2013 to 2017) to train the model to level up the burned area from satellite-derived 

products. For the areas that have permit burns but not detected by satellite, we can use 

methods mentioned previously to calculate the possibility that whether it burns or not. For 

instance, for the grid that burns every year according to permit records, even the satellite 

does not capture the burn there, we can treat that grid as 100% burn grid. For the grid that 

burn with a cycle (e.g. 2 years period) we can estimate the possibility that it burns in current 

year. Finally, we can treat the area that has the burn possibility (e.g. 80%) as the real burned 

area. The calibrated results will be useful for emission estimation and improving model 

simulations on quantifying the impact of prescribed burning. Also, evaluation of burned 

area using newly launched satellites such as GOES-16 could be conducted. Hazard 
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Mapping System now incorporates multiple satellites to generate burned area product. We 

can choose a recent year (2018) to do repeat comparison between permit records and 

satellite-derived product to find whether there are improvements using newly launched 

satellites.  

The new source apportionment method could be further applied to the forecast 

system. With information on the marginal contribution of each burn to the air quality 

downwind, the following dynamic management protocol can be employed (Figure 7-1). 

The burns that have minimal impacts are permissible, while the ones that contribute a lot 

may have to be denied. In this case, burn A contributes almost nothing to the regional peak 

PM2.5 concentration. Burn B contributes a little bit more, but still not very much. Burn C 

contributes still more, and so on up through burn H. If all the burns A-H were permitted, 

then the region would exceed the NAAQS. If only burns A-F were permitted, however, 

PM2.5 concentrations would stop short of the NAAQS. This approach might maximize the 

amount of land that could be burned without going over the NAAQS. Burning any more 

(i.e., burns G and H) would put the region over the NAAQS. 

Figure 7-1 Illustration of how forecasts of the air quality impacts of individual 

burns can be employed for dynamic air quality management (Odman et al. 2017) 
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DASI could also be evaluated by comparing with other source apportionment 

methods (CMB, CMAQ-DDM). The chemical transport model and dispersion model could 

be changed accordingly.  

A dense network including other types of low-cost sensors can be built in 

southwestern Georgia or other places to further investigate the performance of those 

sensors in detecting fire impact or other sources. The on-road mobile emissions sector is 

another important source of air pollution. It would be quite interesting to look at the near-

road air pollution concentrations using low-cost sensors.  The spatial variation provided by 

the near road low-cost sensors network could benefit the health studies to better estimate 

the exposure fields and minimize the uncertainty in CTM using data fusion method. 

There are many new methods developed and improved to provide the 

spatiotemporal exposure fields for health studies such as satellite-retrieved AOD included 

methods, improved Land Use Regression model, hybrid methods that incorporate AOD 

data, monitor observations, land use variables and CTM simulations in the last decade. All 

those methods have their pros and cons and should be evaluated by inter-comparison for 

the same domain (CONUS) at the same spatial resolution. Those methods should also be 

assessed in applications to health studies to see how different health results may respond 

to different methods, especially at different resolutions and to answer the question of how 

fine the exposure fields should be for different type of health studies considering the time 

and effort spent, to find the balance between appropriate resolution of exposure fields and 

reasonable health results.  
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In sum many, quantifying the impacts of prescribed burning from each fire, 

especially one large fire or a cluster of small fires at the same time, on air quality and 

human health in the Southeast is important. Prescribed burning is a preferred land 

management tool but also a prominent source of air pollution in the U.S., and exposure to 

fire smoke is a growing health concern.  
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APPENDIX A. CHAPTER 2 SUPPLEMENTAL INFORMATION 

Figure A - 1 Total burned areas of first four months of the year by county in 

Georgia: a) 2015, b) 2016. The scale for permit records is 10 times larger than the 

scale for GFED4s and BBEP. 

  

(a) 

(b) 

(a) 
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Figure A - 2Total burned areas of first four months of the year by county in Florida: 

a) 2015, b) 2016. The scale for permit records is 4 or 5 times larger than the scale for 

GFED4s and BBEP. 

  

(a) 

(b) 
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Figure A - 3 Comparison between permit records (left) and BAECV results (right) 

in Georgia (2015). The scale for permit records is 10 times larger than the scale for 

BAECV. 
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Figure A - 4 Fire Districts in Georgia (a) and Florida (b) 
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Figure A - 5 Inter-comparisons of permit record, BBEP and GFED4s burned areas 

in Georgia for the first 4 months of 2015: County totals (top row) and district totals 

(bottom row).  
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Figure A - 6 Inter-comparisons of permit record, BBEP and GFED4s burned areas 

in Florida for the first 4 months of 2015: County totals (top row) and district totals 

(bottom row). The red dots in the middle panels represent Palm Beach County and 

District 18 where sugarcane burning dominates.  
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Figure A - 7 Comparison of daily state total burned areas for the first four months 

of 2015 and 2016 in Georgia: BBEP versus permit record data (Log-

transformation).  
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Figure A - 8 Residuals of permit records and BBEP (top) and log-transformation 

permit records and BBEP (bottom) in GA.  

  



 131 

Figure A - 9 Comparison of daily count of fires between permit record data and 

BBEP in Georgia (top) and Florida (bottom) for the first 4 months of 2015 and 2016.  
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Figure A - 10 Total burned areas of permitted sugarcane burns by county in Florida 

during the first four months of 2015 (left) and 2016 (right).  
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Figure A - 11 Comparison of burned areas between permitted sugarcane burns and 

BBEP-detected fires in Palm Beach County, Florida for the first four months of 

2015 (left) and 2016 (right).  
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Figure A - 12 Comparison of daily state total burned areas between permitted non-

sugarcane burns (i.e., all burn types except sugarcane) and BBEP-detected fires in 

Florida for the first four months of 2015 (left) and 2016 (right).. 
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Table A - 1 Size distribution of fires according to burn permit records and BBEP in 

Georgia for 2015 and 2016  

Georgia 
Permit  BBEP 

Year 

Size 
2015 2016  2015 2016 

0-5 47.0% 46.3%  0.0% - 

5-10 9.6% 9.4%  1.5% 4.8% 

10-25 16.5% 16.5%  14.3% 13.4% 

25-50 10.7% 11.0%  76.6% 78.3% 

50-100 11.3% 12.1%  2.2% 0.3% 

100-250 3.9% 3.9%  5.0% 2.1% 

250-500 0.7% 0.7%  0.3% 0.2% 

500-100 0.2% 0.1%  0.0% - 

1000+ 0.1% 0.1%  - 0.8% 

Total count 

of fires 
39602 46958  3872 5814 
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Table A - 2 Size distribution of fires according to burn permit records and BBEP in 

Florida for 2015 and 2016 

Florida 
Permit  BBEP 

Year 

Size 
2015 2016  2015 2016 

0-5 17.0% 19.5%  - - 

5-10 4.1% 3.6%  1.7% 2.8% 

10-25 12.9% 12.6%  15.9% 15.8% 

25-50 23.9% 25.7%  48.0% 67.5% 

50-100 21.3% 20.3%  10.4% 2.4% 

100-250 11.7% 11.1%  21.3% 5.7% 

250-500 4.3% 3.8%  2.4% 0.8% 

500-100 2.9% 1.9%  0.3% 0.2% 

1000+ 1.9% 1.5%  0.1% 4.7% 

Total count 

of fires 
14389 15933  3526 3454 
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APPENDIX B. CHAPTER 3 SUPPLEMENTAL INFORMATION 

 

Figure B - 1 Split fire impacts based on diffused HYSPLIT fields of fire ID02 
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Figure B - 2 Comparison between split single fire impact and single fire impact from 

CMAQ-DDM of fire ID02 at ground layer 
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Figure B - 3 Split fire impacts based on diffused HYSPLIT fields of fire ID03 
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Figure B - 4 Comparison between split single fire impact and single fire impact from 

CMAQ-DDM of fire ID03 at ground layer  
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Figure B - 5 Split fire impacts based on diffused HYSPLIT fields of fire ID04 
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Figure B - 6 Comparison between split single fire impact and single fire impact from 

CMAQ-DDM of fire ID04 at ground layer  
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APPENDIX C. CHAPTER 4 SUPPLEMENTAL INFORMATION 

Figure C - 1 Correlation between relative humidity from Southwest Georgia 

Regional Airport Site, and PM2.5 from the BAM at the Albany EPD site 
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Figure C - 2 Daily total burn acres from GFC permit data at low-cost sensor 

deployed and surrounding counties and observation from EPD site (red text: daily 

PM2.5 concentration) 
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Figure C - 3 Permitted burns on March 9 (left), March 10 (middle) and March 13, 

2018 (right): red circles represent fires larger than 150 acres  
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Figure C - 4 Hourly PM2.5 concentrations from low-cost sensors and BAM at GA 

EPD site (Albany) from May 16, 2017 to June 20, 2018  
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Figure C - 5 Comparison of hourly PM2.5 concentrations between high school low-

cost sensors and BAM at GA EPD site (Albany) from May 16, 2017 to June 20, 2018 

(Lee County sensor was down from July 28, 2017 to March 13, 2018 and April 21, 

2018 to June 20, 2018; Worth County Sensor was down from May 09, 2018 to June 

20, 2018) 
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Figure C - 6 Comparison of hourly and daily PM2.5 concentrations between the low-

cost sensor (Albany) and BAM at the GA EPD site (Albany) from March 14, 2018 to 

June 20, 2018 
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Figure C - 7 Comparison of daily PM2.5 concentrations between high school low-cost 

sensors and BAM at GA EPD site (Albany) with a cut-off at 95% of BAM 

observation 
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Figure C - 8 Orthogonal regression between low-cost sensors 
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Figure C - 9 Comparison between observed and simulated PM2.5 concentrations, and 

the fire impact from March 9 to March 10, 2018 at DCHS 
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Figure C - 10 Observations on March 13 at GA EPD site (Albany), DCHS and 

WCHS  
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Figure C - 11 Spatial fields of hourly PM2.5 concentration on March 13 from 11 a.m. 

to 4 p.m.: GA EPD site (Albany) (white dot), DCHS (green dot), WCHS (blue dot) 

and LCHS (red dot) 
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APPENDIX D. CHAPTER 5 SUPPLEMENTAL INFORMATION 

A.1  Data Fusion Method (Friberg et al. 2016) 

Annual mean fields 𝐶̅ were calculated by using power regression analysis on the 

yearly mean of the daily observed concentrations (𝑂𝐵𝑆𝑚) at each monitor versus the mean 

of the CMAQ concentrations (𝐶𝑀𝐴𝑄𝑚) on corresponding days at each monitored grid 

location (Eq.1). The exponent β is constant for all years, while α changes annually (Table 

S1). Annual average CMAQ-derived fields are then constructed as: 

𝑪𝒚𝒆𝒂𝒓(𝒔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =   𝜶𝒚𝒆𝒂𝒓 × 𝑪𝑴𝑨𝑸(𝒔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝜷 (1) 

Where, the overbar indicates annual temporal averaging, s corresponds to the space, and t 

represents the specific day being analyzed. 

Daily interpolated observation fields, 𝐶1, are created multiplying the annual mean 

CMAQ-derived fields (𝑪𝒚𝒆𝒂𝒓(𝒔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) by the interpolated daily ratios of daily observations 

normalized by annual mean observations at each monitor (Eq. 2). The interpolated fields 

were calculated using ordinary kriging method. 

𝑪𝟏(𝒔, 𝒕) = [
𝑶𝑩𝑺𝒎(𝒕)

𝑶𝑩𝑺𝒎̅̅ ̅̅ ̅̅ ̅̅ ̅
]𝒌𝒓𝒊𝒈 × 𝑪𝒚𝒆𝒂𝒓(𝒔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   (2) 

Daily CMAQ fields were scaled the annual average CMAQ-derived concentration 

field divided by the annual average of the CMAQ field at that location (Eq. 3).  

𝑪𝟐(𝒔, 𝒕) = 𝑪𝒚𝒆𝒂𝒓(𝒔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ × [
𝑪𝑴𝑨𝑸(𝒔,𝒕)

𝑪𝑴𝑨𝑸(𝒔)
]  (3) 
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Combining 𝐶1 and 𝐶2 predicted fields via weighting the average based on daily 

estimation of error with following equations.  

𝑹𝟏(𝒔, 𝒕) ≈ 𝑹𝒄𝒐𝒍𝒍𝒆
−𝑫(𝒔,𝒕)𝜸 (4) 

𝑹𝟐 = 𝑹[𝑶𝑩𝑺𝒊, 𝑪𝑴𝑨𝑸𝒊]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (5) 

 𝑭(𝒔, 𝒕) =  
𝑹𝟏(s,t)×(𝟏−𝑹𝟐)

𝑹𝟏(s,t) ×(𝟏−𝑹𝟐)+𝑹𝟐 ×(𝟏−𝑹𝟏(s,t))
     (6) 

𝑪∗(𝒔, 𝒕) = 𝑭(𝒔, 𝒕) × 𝑪𝟏(s, t) + (𝟏 − 𝑭(𝒔, 𝒕)) × 𝑪𝟐(𝑠, 𝑡)   (7) 

Where, R1 is the estimated temporal correlation of observation as a function of distance 

from monitor, Rcoll is the intercept which results from instrument error (i.e., error as 

estimated by collocated instruments), D is the distance between monitor locations, 𝜸  is the 

range at which the correlation between monitors has decreased to an e-folding of Rcoll 

(Table D - 1),  𝑅2 is the average of the temporal correlations at all monitors, i is the 

designation for each monitor and F is the weighting factor. 𝐶∗ is the final fused field. 

A.2  Integrated Mobile Source Indicator (IMSI) (Pachon et al. 2012) 

IMSI uses the emission ratios of DV or GV for each species to separate the 

contribution ratios, and assume the temporal variations are the mobile source impact 

variations 

𝐼𝑀𝑆𝐼 =

𝐸𝐸𝐶,𝑚𝑜𝑏𝑖𝑙𝑒
𝐸𝐸𝐶,𝑡𝑜𝑡𝑎𝑙

×𝐶𝐸𝐶
′ +

𝐸𝑁𝑂𝑥,𝑚𝑜𝑏𝑖𝑙𝑒

𝐸𝑁𝑂𝑥,𝑡𝑜𝑡𝑎𝑙
×𝐶𝑁𝑂𝑥

′ +
𝐸𝐶𝑂,𝑚𝑜𝑏𝑖𝑙𝑒

𝐸𝐶𝑂,𝑡𝑜𝑡𝑎𝑙
×𝐶𝐶𝑂

′

𝐸𝐸𝐶,𝑚𝑜𝑏𝑖𝑙𝑒
𝐸𝐸𝐶,𝑡𝑜𝑡𝑎𝑙

+
𝐸𝑁𝑂𝑥,𝑚𝑜𝑏𝑖𝑙𝑒

𝐸𝑁𝑂𝑥,𝑡𝑜𝑡𝑎𝑙
+

𝐸𝐶𝑂,𝑚𝑜𝑏𝑖𝑙𝑒
𝐸𝐶𝑂,𝑡𝑜𝑡𝑎𝑙

  (8) 
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𝐼𝑀𝑆𝐼𝐷𝑉 =

𝐸𝐸𝐶,𝐷𝑉
𝐸𝐸𝐶,𝑡𝑜𝑡𝑎𝑙

×𝐶𝐸𝐶
′ +

𝐸𝑁𝑂𝑥,𝐷𝑉

𝐸𝑁𝑂𝑥,𝑡𝑜𝑡𝑎𝑙
×𝐶𝑁𝑂𝑥

′ +
𝐸𝐶𝑂,𝐷𝑉

𝐸𝐶𝑂,𝑡𝑜𝑡𝑎𝑙
×𝐶𝐶𝑂

′

𝐸𝐸𝐶,𝐷𝑉
𝐸𝐸𝐶,𝑡𝑜𝑡𝑎𝑙

+
𝐸𝑁𝑂𝑥,𝐷𝑉

𝐸𝑁𝑂𝑥,𝑡𝑜𝑡𝑎𝑙
+

𝐸𝐶𝑂,𝐷𝑉
𝐸𝐶𝑂,𝑡𝑜𝑡𝑎𝑙

    (9) 

𝐼𝑀𝑆𝐼𝐺𝑉 =

𝐸𝐸𝐶,𝐺𝑉
𝐸𝐸𝐶,𝑡𝑜𝑡𝑎𝑙

×𝐶𝐸𝐶
′ +

𝐸𝑁𝑂𝑥,𝐺𝑉

𝐸𝑁𝑂𝑥,𝑡𝑜𝑡𝑎𝑙
×𝐶𝑁𝑂𝑥

′ +
𝐸𝐶𝑂,𝐺𝑉

𝐸𝐶𝑂,𝑡𝑜𝑡𝑎𝑙
×𝐶𝐶𝑂

′

𝐸𝐸𝐶,𝐺𝑉
𝐸𝐸𝐶,𝑡𝑜𝑡𝑎𝑙

+
𝐸𝑁𝑂𝑥,𝐺𝑉

𝐸𝑁𝑂𝑥,𝑡𝑜𝑡𝑎𝑙
+

𝐸𝐶𝑂,𝐺𝑉
𝐸𝐶𝑂,𝑡𝑜𝑡𝑎𝑙

  (10) 

where 𝐼𝑀𝑆𝐼  (µg/m3) represents the emission-based IMSI value, 𝐼𝑀𝑆𝐼𝐺𝑉 and 𝐼𝑀𝑆𝐼𝐷𝑉 

represent the emission-based IMSI value for gasoline and diesel vehicles,  𝐸𝐸𝐶,𝑚𝑜𝑏𝑖𝑙𝑒 is EC 

emissions from mobile sources, 𝐶𝑖
′ =  𝐶𝑖/𝜎𝑖 denotes the normalized concentrations, and 

𝐶𝑖and 𝜎𝑖 represent the average concentration and standard deviation of pollutant 𝑖 in the 

period 2006 to 2008. Emissions for gasoline and diesel vehicles originated from the 

National Emissions Inventory (U.S. Environmental Protection Agency) and were 

processed using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. 

A.3  Two-stage Statistical Model (Hu et al. 2014a) 

The stage-one model structure can be expressed as 
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where PM2.5,st is the measured ground level PM2.5 concentration (μg/m3) at site s on day t; 

b0 and b0,t (day-specific) are the fixed and random intercept, respectively; AODst is the 

MODIS AOD value (unitless) at site s on day t ; b1 and b1,t (day-specific) are the fixed and 

random slopes for AOD, respectively; Relative Humidityst is the relative humidity (%) at 

site s on day t; b2 and b2,t (day-specific) are the fixed and random slopes for relative 

humidity, respectively; Wind Speedst is the 2-m wind speed (m/sec) at site s on day t; b3 
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and b3,t (day-specific) are the fixed and random slopes for wind speed, respectively; 

Elevations is elevation values (m) at site s; Major Roadss is road length values (m) at site 

s; Forest Covers is forest cover values (unitless) at site s; Point Emissionss is point 

emissions (tons per year) at site s; and Ψ is an unstructured variance-covariance matrix for 

the random effects.  

The stage-two model structure can be expressed as 

ststssst AODresiPM   ,1,05.2 _  

where PM2.5_resist denotes the residuals from the stage one model at site s on day t, AODst 

is the MODIS AOD value (unitless) at site s on day t, and β0,s and β1,s are the location-

specific intercept and slope. 

A.4  Neural Network-based Hybrid Model (Di et al. 2016) 

The hybrid prediction model was used to estimate PM2.5 spatiotemporal fields. Briefly, 

data is used from satellite remote sensing (aerosol optical depth from the MODIS 

instrument on the Aqua and Terra satellites, absorbing aerosol index in the UV and visible 

range, column ozone, and NO2 from the OMI instrument on the Aura satellite, and 

Normalized Difference Vegetation Index from MODIS instrument) for each available day 

from January 1st, 2000 to December 31st, 2012, with simulation outputs from a chemical 

transport model (GEOS-Chem, also run daily for that period), land-use terms (such as 

distance to major roads, emission sources, land use patterns, etc.), meteorological data 

(including temperature, humidity, wind speed, height of the planetary boundary layer, etc.) 

and other ancillary data to model monitored PM2.5. A neural network approach 
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then combines these data to predict daily measurements at all EPA monitoring locations 

(N=1,928 for PM2.5).  Convolution layers capture spatial and temporal autocorrelations. To 

avoid overfitting, the optimal model was chosen based on prediction accuracy on left out 

monitors. The final model provided predictions of daily PM2.5 levels in the continental 

United States with a spatial resolution of 1 km.  
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Figure D - 1 PM2.5 monitor site (Each color represents a spatially-removed group) 

 

  



 160 

 

Figure D - 2 Probability density distribution of all species from 2006 to 2008 
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Figure D - 3 Annual average spatial distributions fields from Data Fusion, 2006 
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Figure D - 4 Annual average spatial distributions fields from Data Fusion, 2007 
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Figure D - 5 Normalized monthly average concentration for all species from 2006 to 

2008 

 

  



 164 

 

Figure D - 6 Annual trends of IMSIEB, IMSIEB, GV and IMSIEB, DV from 2006 to 2008 

(unitless) 
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Figure D - 7 Annual IMSIEB, IMSIEB, GV and IMSIEB, DV from 2006 to 2008 
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Figure D - 8 Temporal correlations between IMSI and PM2.5 concentrations from 

2006 to 2008 
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Figure D - 9 Temporal correlations between PM2.5 and EC, CO, NOx from 2006 to 

2008 
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Figure D - 10 Comparison of R2 between observations and simulated datasets 

(CMAQ, Data Fusion and 10% data-withheld Data Fusion) for 2006-2008 
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Figure D - 11 Linear regression between observation (OBS) and simulations (CO, 

data fusion) 

 

  



 170 

 

Figure D - 12Linear regression between observation (OBS) and simulations (NO2) 
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Figure D - 13 Comparison of RMSE between observations and simulated datasets 

(CMAQ, Data Fusion and 10% data-withheld Data Fusion) for 2006-2008 

(ug/m3:PM25, EC, OC, NH4
+, NO3

-, SO4
2-; ppb: NO2, NOx, CO) 
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Figure D - 14 Maximum RMSD between leave-out-randomly (first time) and data 

fusion for all randomly leave 10% monitors out from 2006 (left) to 2008 (right) 

 

  



 173 

 

Figure D - 15 Maximum RMSD between leave-out-randomly (second time) and data 

fusion among all randomly leave 10% monitors out groups from 2006 (left) to 2008 

(right). 
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Figure D - 16 Maximum RMSD between leave-out-spatially and data fusion among 

all spatially leave out groups from 2006 (left) to 2008 (right) 
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Figure D - 17 Annual average spatial distributions fields from Ordinary Kriging 

(2006, 2007, 2008) 
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Figure D - 18 Linear regression between OBS and Ordinary kriging (PM2.5, up: 

total data; done: Leave-monitors-out results) 
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Figure D - 19 Linear regression between OBS and Ordinary kriging (CO, left: total 

data; right: Leave-one-out results) 
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Figure D - 20 Linear regression between observation (OBS) and neural network-

based hybrid model (Hybrid) 
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Figure D - 21 Annual average spatial distributions fields from neural network-based 

hybrid model for PM2.5, 2006 – 2008 (12km) 
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Figure D - 22 Annual average spatial distributions fields from two-stage statistical 

Model for PM2.5, 2006 – 2008 (12km) 
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Figure D - 23 Annual average spatial distributions fields from data fusion for PM2.5, 

2006 – 2008 (12km) 
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Table D - 1 Parameters in Eq. 1 from 2006 to 2008 for 12-km resolution 

  
PM2.5 EC OC NH4 NO3 SO4 NO2 NOx CO 

< C* >  0.5 1 0.6 0.7 0.5 0.7 0.2 1.4 1.3 

 4.2 1.4 1.7 1 0.5 1.7 7.50 1.7 0.4 

 4.2 1.4 1.6 1 0.5 1.8 7.20 1.2 0.3 

 3.6 1 1.5 1 0.4 1.8 6.90 1.0 0.4 

R2 average 0.53 0.45 0.46 0.51 0.57 0.71 0.44 0.49 0.40 

R1 Rcoll 0.93 0.61 0.98 0.98 0.90 0.98 0.8 2.01 0.6 

 0.0022 0.0017 0.0030 0.0021 0.0018 0.0017 0.001 0.007 0.004 
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APPENDIX E. CHAPTER 6 SUPPLEMENTAL INFORMATION 

Figure E - 1 Comparison of daily total PM2.5 concentration between observations 

(OBS) and CMAQ from 2015 to 2018, first four months 
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Figure E - 2 Comparison of daily total PM2.5 concentration between observations 

(OBS) and DF from 2015 to 2018, first four months 
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Figure E - 3 January – April monthly averages of total PM2.5 and fire impact (2015): 

CMAQ-simulated, data fused and their difference  
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Figure E - 4 January – April monthly averages of total PM2.5 and fire impact (2016): 

CMAQ-simulated, data fused and their difference 
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Figure E - 5 January – April monthly averages of total PM2.5 and fire impact (2017): 

CMAQ-simulated, data fused and their difference  
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Figure E - 6 January – April monthly averages of total PM2.5 and fire impact (2018): 

CMAQ-simulated, data fused and their difference  
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Figure E - 7 2016 Georgia Data Summary (asthma in children and adults) (Georgia 

Department of Public Health 2017a; Georgia Department of Public Health 2017b) 

  



 190 

REFERENCES 

Achtemeier GL, Goodrick SA, Liu Y (2012) Modeling Multiple-Core Updraft Plume Rise 

for an Aerial Ignition Prescribed Burn by Coupling Daysmoke with a Cellular 

Automata Fire Model. Atmosphere (Basel) 3:352–376. doi: 10.3390/atmos3030352 

Alman BL, Pfister G, Hao H, et al (2016) The association of wildfire smoke with 

respiratory and cardiovascular emergency department visits in Colorado in 2012: a 

case crossover study. Environ Heal 15:64. doi: 10.1186/s12940-016-0146-8 

Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. 

Global Biogeochem Cycles 15:955–966. doi: 10.1029/2000GB001382 

Baek J, Hu Y, Odman MT, Russell AG (2011) Modeling secondary organic aerosol in 

CMAQ using multigenerational oxidation of semi-volatile organic compounds. J 

Geophys Res Atmos 116:D22204. doi: 10.1029/2011JD015911 

Balachandran S, Baumann K, Pachon JE, et al (2017) Evaluation of fire weather forecasts 

using PM2.5 sensitivity analysis. Atmos Environ 148:128–138. doi: 

10.1016/J.ATMOSENV.2016.09.010 

Barbero R, Abatzoglou JT, Larkin NK, et al (2015) Climate change presents increased 

potential for very large fires in the contiguous United States. Int J Wildl Fire. doi: 

10.1071/WF15083 

Beelen R, Hoek G, Pebesma E, et al (2009) Mapping of background air pollution at a fine 

spatial scale across the European Union. Sci Total Environ 407:1852–67. doi: 

10.1016/j.scitotenv.2008.11.048 

Bergin MS, Russell AG, Odman MT, et al (2008) Single-Source Impact Analysis Using 

Three-Dimensional Air Quality Models. J Air Waste Manage Assoc 58:1351–1359. 

doi: 10.3155/1047-3289.58.10.1351 

Binkowski FS (2003) Models-3 Community Multiscale Air Quality (CMAQ) model 

aerosol component 1. Model description. J Geophys Res 108:4183. doi: 

10.1029/2001JD001409 

Boschetti L, Eva HD, Brivio PA, Grégoire JM (2004) Lessons to be learned from the 

comparison of three satellite-derived biomass burning products. Geophys Res Lett 

31:n/a–n/a. doi: 10.1029/2004GL021229 



 191 

Brenner J, Goodrick S (2005) FLORIDA’S FIRE MANAGEMENT INFORMATION 

SYSTEM.  

Brook RD, Franklin B, Cascio W, et al (2004) Air Pollution and Cardiovascular Disease.  

Byun D, Schere KL (2006a) Review of the Governing Equations, Computational 

Algorithms, and Other Components of the Models-3 Community Multiscale Air 

Quality (CMAQ) Modeling System. Appl Mech Rev 59:51. doi: 10.1115/1.2128636 

Byun D, Schere KL (2006b) Review of the Governing Equations, Computational 

Algorithms, and Other Components of the Models-3 Community Multiscale Air 

Quality (CMAQ) Modeling System. Appl Mech Rev 59:51. doi: 10.1115/1.2128636 

Carlton AG, Turpin BJ, Altieri KE, et al (2008) CMAQ Model Performance Enhanced 

When In-Cloud Secondary Organic Aerosol is Included: Comparisons of Organic 

Carbon Predictions with Measurements. Environ Sci Technol 42:8798–8802. doi: 

10.1021/es801192n 

Carmona-Moreno C, Belward A, Malingreau J-P, et al (2005) Characterizing interannual 

variations in global fire calendar using data from Earth observing satellites. Glob 

Chang Biol 11:1537–1555. doi: 10.1111/j.1365-2486.2005.01003.x 

Choi Y-J, Fernando HJS (2007) Simulation of smoke plumes from agricultural burns: 

Application to the San Luis/Rio Colorado airshed along the U.S./Mexico border. Sci 

Total Environ 388:270–289. doi: 10.1016/J.SCITOTENV.2007.07.058 

Chu S-H (2004) PM2.5 episodes as observed in the speciation trends network. Atmos 

Environ 38:5237–5246. doi: 10.1016/j.atmosenv.2004.01.055 

Chuvieco E, Yue C, Heil A, et al (2016) A new global burned area product for climate 

assessment of fire impacts. Glob Ecol Biogeogr 25:619–629. doi: 10.1111/geb.12440 

Cohen AJ, Brauer M, Burnett R, et al (2017) Estimates and 25-year trends of the global 

burden of disease attributable to ambient air pollution: an analysis of data from the 

Global Burden of Diseases Study 2015. Lancet 389:1907–1918. doi: 10.1016/S0140-

6736(17)30505-6 

Connell BH, Gould KJ, Purdom JFW (2001) High-Resolution GOES-8 Visible and 

Infrared Cloud Frequency Composites over Northern Florida during the Summers 

1996–99. Weather Forecast 16:713–724. doi: 10.1175/1520-

0434(2001)016<0713:HRGVAI>2.0.CO;2 



 192 

Cressie N (1988) Spatial prediction and ordinary kriging. Math Geol 20:405–421. doi: 

10.1007/BF00892986 

Darrow LA, Klein M, Flanders WD, et al (2014) Air Pollution and Acute Respiratory 

Infections Among Children 0–4 Years of Age: An 18-Year Time-Series Study. Am J 

Epidemiol 180:968–977. doi: 10.1093/aje/kwu234 

Davis AY, Ottmar R, Liu Y, et al (2015) Fire emission uncertainties and their effect on 

smoke dispersion predictions: a case study at Eglin Air Force Base, Florida, USA. Int 

J Wildl Fire 24:276–285. doi: 10.1071/WF13071 

Deming WE (1943) Statistical adjustment of data.  

Dennekamp M, Abramson MJ (2011) The effects of bushfire smoke on respiratory health. 

Respirology 16:198–209. doi: 10.1111/j.1440-1843.2010.01868.x 

Di Q, Kloog I, Koutrakis P, et al (2016) Assessing PM 2.5 Exposures with High 

Spatiotemporal Resolution across the Continental United States. Environ Sci Technol 

50:4712–4721. doi: 10.1021/acs.est.5b06121 

Dionisio KL, Baxter LK, Burke J, ?zkaynak H (2016) The importance of the exposure 

metric in air pollution epidemiology studies: When does it matter, and why? Air Qual 

Atmos Heal 9:495–502. doi: 10.1007/s11869-015-0356-1 

Dohrenwend PB, Le M V, Bush JA, Thomas CF (2013) The impact on emergency 

department visits for respiratory illness during the southern california wildfires. West 

J Emerg Med 14:79–84. doi: 10.5811/westjem.2012.10.6917 

Draxler RR, Hess GD (1997) NOAA Technical Memorandum ERL ARL-224 

DESCRIPTION OF THE HYSPLIT_4 MODELING SYSTEM.  

Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modelling system for 

trajectories. Aust Meteorol Mag 47:295–308. 

Dunker AM (1984) The decoupled direct method for calculating sensitivity coefficients in 

chemical kinetics. J Chem Phys 81:2385–2393. doi: 10.1063/1.447938 

Dunker* AM, Yarwood G, Ortmann JP, Wilson GM (2002) Comparison of Source 

Apportionment and Source Sensitivity of Ozone in a Three-Dimensional Air Quality 

Model. doi: 10.1021/ES011418F 

Emery C, Liu Z, Russell AG, et al (2017) Recommendations on statistics and benchmarks 



 193 

to assess photochemical model performance. J Air Waste Manage Assoc 67:582–598. 

doi: 10.1080/10962247.2016.1265027 

Environ R (2016) User’s Guide—Comprehensive Air-Quality Model with Extensions, 

Version 6.3.  

EPA U (2011) 2011 National Emissions Inventory (NEI) Documentation.  

Fann N, Alman B, Broome RA, et al (2018) The health impacts and economic value of 

wildland fire episodes in the US: 2008-2012. Sci Total Environ 610:802–809. doi: 

10.1016/j.scitotenv.2017.08.024 

Faustini A, Alessandrini ER, Pey J, et al (2015) Short-term effects of particulate matter on 

mortality during forest fires in Southern Europe: results of the MED-PARTICLES 

Project. Occup Environ Med 72:323–9. doi: 10.1136/oemed-2014-102459 

Forouzanfar MH, Afshin A, Alexander LT, et al (2016) Global, regional, and national 

comparative risk assessment of 79 behavioural, environmental and occupational, and 

metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global 

Burden of Disease Study 2015. Lancet 388:1659–1724. doi: 10.1016/S0140-

6736(16)31679-8 

Fraser RH, Li Z, Cihlar J (2000a) Hotspot and NDVI Differencing Synergy (HANDS) A 

New Technique for Burned Area Mapping over Boreal Forest. Remote Sens Environ 

74:362–376. doi: 10.1016/S0034-4257(00)00078-X 

Fraser RH, Li Z, Landry R (2000b) SPOT VEGETATION for characterizing boreal forest 

fires. Int J Remote Sens 21:3525–3532. doi: 10.1080/014311600750037534 

Friberg MD, Zhai X, Holmes HA, et al (2016) Method for Fusing Observational Data and 

Chemical Transport Model Simulations To Estimate Spatiotemporally Resolved 

Ambient Air Pollution. Environ Sci Technol 50:3695–3705. doi: 

10.1021/acs.est.5b05134 

Gao M, Cao J, Seto E (2015) A distributed network of low-cost continuous reading sensors 

to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ Pollut 

199:56–65. doi: 10.1016/J.ENVPOL.2015.01.013 

Garcia-Menendez F, Hu Y, Odman MT (2014) Simulating smoke transport from wildland 

fires with a regional-scale air quality model: Sensitivity to spatiotemporal allocation 

of fire emissions. Sci Total Environ 493:544–553. doi: 

10.1016/J.SCITOTENV.2014.05.108 



 194 

Garcia-Menendez F, Hu Y, Odman MT (2013) Simulating smoke transport from wildland 

fires with a regional-scale air quality model: Sensitivity to uncertain wind fields. J 

Geophys Res Atmos 118:6493–6504. doi: 10.1002/jgrd.50524 

Georgia Department of Public Health (2017a) 2016 GEORGIA DATA SUMMARY | 

ADULT ASTHMA.  

Georgia Department of Public Health (2017b) 2016 GEORGIA DATA SUMMARY | 

ASTHMA IN CHILDREN.  

Gertler AW (2005) Diesel vs. gasoline emissions: Does PM from diesel or gasoline 

vehicles dominate in the US? Atmos Environ 39:2349–2355. doi: 

10.1016/j.atmosenv.2004.05.065 

Gertler AW, Gillies JA, Pierson WR An Assessment of the Mobile Source Contribution to 

PM10 and PM2.5 in the United States. Water Air Soil Pollut 123:203–214. doi: 

10.1023/A:1005263220659 

Gibson HM, Vonder Haar TH (1990) Cloud and Convection Frequencies over the 

Southeast United States as Related to Small-Scale Geographic Features. Mon Weather 

Rev 118:2215–2227. doi: 10.1175/1520-0493(1990)118<2215:CACFOT>2.0.CO;2 

Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An Enhanced Contextual Fire 

Detection Algorithm for MODIS. Remote Sens Environ 87:273–282. doi: 

10.1016/S0034-4257(03)00184-6 

Giglio L, Randerson JT, van der Werf GR, et al (2010) Assessing variability and long-term 

trends in burned area by merging multiple satellite fire products. Biogeosciences 

7:1171–1186. doi: 10.5194/bg-7-1171-2010 

Giglio L, Randerson JT, van der Werf GR (2013) Analysis of daily, monthly, and annual 

burned area using the fourth-generation global fire emissions database (GFED4). J 

Geophys Res Biogeosciences 118:317–328. doi: 10.1002/jgrg.20042 

Giglio L, Schroeder W, Justice CO (2016) The collection 6 MODIS active fire detection 

algorithm and fire products. Remote Sens Environ 178:31–41. doi: 

10.1016/J.RSE.2016.02.054 

Gilboa SM, Mendola P, Olshan AF, et al (2005) Relation between ambient air quality and 

selected birth defects, seven county study, Texas, 1997-2000. Am J Epidemiol 

162:238–52. doi: 10.1093/aje/kwi189 



 195 

Gilliland AB, Hogrefe C, Pinder RW, et al (2008) Dynamic evaluation of regional air 

quality models: Assessing changes in O3 stemming from changes in emissions and 

meteorology. Atmos Environ 42:5110–5123. doi: 10.1016/j.atmosenv.2008.02.018 

Godowitch JM, Gilliam RC, Roselle SJ (2015) Investigating the impact on modeled ozone 

concentrations using meteorological fields from WRF with an updated four–

dimensional data assimilation approach. Atmos Pollut Res 6:305–311. doi: 

10.5094/APR.2015.034 

Goodrick SL, Achtemeier GL, Larkin NK, et al (2013) Modelling smoke transport from 

wildland fires: a review. Int J Wildl Fire 22:83. doi: 10.1071/WF11116 

Gupta P, Doraiswamy P, Levy R, et al (2018) Impact of California Fires on Local and 

Regional Air Quality: The Role of a Low-Cost Sensor Network and Satellite 

Observations. GeoHealth. doi: 10.1029/2018GH000136 

Haikerwal A, Akram M, Del Monaco A, et al (2015) Impact of Fine Particulate Matter 

(PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes. J Am Heart 

Assoc 4:e001653. doi: 10.1161/JAHA.114.001653 

Hakami A, M. Talat Odman;, Russell AG (2003) High-Order, Direct Sensitivity Analysis 

of Multidimensional Air Quality Models. doi: 10.1021/ES020677H 

Han I, Symanski E, Stock TH (2017) Feasibility of using low-cost portable particle 

monitors for measurement of fine and coarse particulate matter in urban ambient air. 

J Air Waste Manage Assoc 67:330–340. doi: 10.1080/10962247.2016.1241195 

Hawbaker TJ, Vanderhoof MK, Beal YG, et al (2017) Landsat Burned Area Essential 

Climate Variable products for the conterminous United States (1984 -2015). US Geol 

Surv data release. doi: 10.5066/F73B5X76 

He L, Li Z (2012) Enhancement of a fire detection algorithm by eliminating solar reflection 

in the mid-IR band: application to AVHRR data. Int J Remote Sens 33:7047–7059. 

doi: 10.1080/2150704X.2012.699202 

Hoelzemann JJ (2004) Global Wildland Fire Emission Model (GWEM): Evaluating the 

use of global area burnt satellite data. J Geophys Res 109:D14S04. doi: 

10.1029/2003JD003666 

Hu X, Waller LA, Al-Hamdan MZ, et al (2013) Estimating ground-level PM(2.5) 

concentrations in the southeastern U.S. using geographically weighted regression. 

Environ Res 121:1–10. doi: 10.1016/j.envres.2012.11.003 



 196 

Hu X, Waller LA, Lyapustin A, et al (2014a) Estimating ground-level PM2.5 

concentrations in the Southeastern United States using MAIAC AOD retrievals and a 

two-stage model. Remote Sens Environ 140:220–232. doi: 10.1016/j.rse.2013.08.032 

Hu X, Yu C, Tian D, et al (2016) Comparison of the Hazard Mapping System (HMS) fire 

product to ground-based fire records in Georgia, USA. J Geophys Res Atmos 

121:2901–2910. doi: 10.1002/2015JD024448 

Hu Y, Balachandran S, Pachon JE, et al (2014b) Fine particulate matter source 

apportionment using a hybrid chemical transport and receptor model approach. Atmos 

Chem Phys 14:5415–5431. doi: 10.5194/acp-14-5415-2014 

Hu Y, Odman MT, Chang ME, Russell AG (2015) Operational forecasting of source 

impacts for dynamic air quality management. Atmos Environ 116:320–322. doi: 

10.1016/J.ATMOSENV.2015.04.061 

Huang R, Zhai X, Ivey CE, et al (2018a) Air pollutant exposure field modeling using air 

quality model-data fusion methods and comparison with satellite AOD-derived fields: 

application over North Carolina, USA. Air Qual Atmos Heal 11:11–22. doi: 

10.1007/s11869-017-0511-y 

Huang R, Zhang X, Chan D, et al (2018b) Burned Area Comparisons Between Prescribed 

Burning Permits in Southeastern United States and Two Satellite-Derived Products. J 

Geophys Res Atmos 123:4746–4757. doi: 10.1029/2017JD028217 

Hubbell B (2012) Understanding urban exposure environments: new research directions 

for informing implementation of U.S. air quality standards. Air Qual Atmos Heal 

5:259–267. doi: 10.1007/s11869-011-0153-4 

In Statista - The Statistics Portal. (2018) National Interagency Fire Center (National 

Interagency Coordination Center). (n.d.). Number of fires and acres burned due to 

U.S. prescribed fires in 2017, by state. In: Stat. - Stat. Portal. 

https://www.statista.com/statistics/204014/highest-number-of-prescribed-fires-in-

the-us-by-states/. Accessed 6 Aug 2018 

Ivey CE, Holmes HA, Hu Y, et al (2016) A method for quantifying bias in modeled 

concentrations and source impacts for secondary particulate matter. Front Environ Sci 

Eng 10:14. doi: 10.1007/s11783-016-0866-6 

Ivey CE, Holmes HA, Hu YT, et al (2015) Development of PM2.5 source impact spatial 

fields using a hybrid source apportionment air quality model. Geosci Model Dev 



 197 

8:2153–2165. doi: 10.5194/gmd-8-2153-2015 

Jathar SH, Cappa CD, Wexler AS, et al (2016) Simulating secondary organic aerosol in a 

regional air quality model using the statistical oxidation model – Part 1: Assessing the 

influence of constrained multi-generational ageing. Atmos Chem Phys 16:2309–2322. 

doi: 10.5194/acp-16-2309-2016 

Johnson KK, Bergin MH, Russell AG, Hagler GSW (2018) Field Test of Several Low-

Cost Particulate Matter Sensors in High and Low Concentration Urban Environments. 

Aerosol Air Qual Res 18:565–578. doi: 10.4209/aaqr.2017.10.0418 

Johnson KK, Bergin MH, Russell AG, Hagler GSW (2016) Using Low Cost Sensors to 

Measure Ambient Particulate Matter Concentrations and On-Road Emissions Factors. 

Atmos Meas Tech Discuss 1–22. doi: 10.5194/amt-2015-331 

Johnson M, Isakov V, Touma JS, et al (2010) Evaluation of land-use regression models 

used to predict air quality concentrations in an urban area. Atmos Environ 44:3660–

3668. doi: 10.1016/j.atmosenv.2010.06.041 

Johnston FH, Purdie S, Jalaludin B, et al (2014) Air pollution events from forest fires and 

emergency department attendances in Sydney, Australia 1996–2007: a case-crossover 

analysis. Environ Heal 13:105. doi: 10.1186/1476-069X-13-105 

Joint Fire Science Program (2009) Consume 3.0-A Software Tool for Computing Fuel 

Consumption.  

Jovašević-Stojanović M, Bartonova A, Topalović D, et al (2015) On the use of small and 

cheaper sensors and devices for indicative citizen-based monitoring of respirable 

particulate matter. Environ Pollut 206:696–704. doi: 

10.1016/J.ENVPOL.2015.08.035 

Kanaroglou PS, Jerrett M, Morrison J, et al (2005) Establishing an air pollution monitoring 

network for intra-urban population exposure assessment: A location-allocation 

approach. Atmos Environ 39:2399–2409. doi: 10.1016/j.atmosenv.2004.06.049 

Kelleher S, Quinn C, Miller-Lionberg D, Volckens J (2018) A low-cost particulate matter 

(PM2.5) monitor for wildland fire smoke. Atmos Meas Tech 11:1087–1097. doi: 

10.5194/amt-11-1087-2018 

Kelly KE, Whitaker J, Petty A, et al (2017) Ambient and laboratory evaluation of a low-

cost particulate matter sensor. Environ Pollut 221:491–500. doi: 

10.1016/J.ENVPOL.2016.12.039 



 198 

Kim S-Y, Yi S-J, Eum YS, et al (2014) Ordinary kriging approach to predicting long-term 

particulate matter concentrations in seven major Korean cities. Environ Health 

Toxicol 29:e2014012. doi: 10.5620/eht.e2014012 

Kim Y-M, Zhou Y, Gao Y, et al (2015) Spatially resolved estimation of ozone-related 

mortality in the United States under two representative concentration pathways 

(RCPs) and their uncertainty. Clim Change 128:71–84. doi: 10.1007/s10584-014-

1290-1 

Krall JR, Mulholland JA, Russell AG, et al (2017) Associations between Source-Specific 

Fine Particulate Matter and Emergency Department Visits for Respiratory Disease in 

Four U.S. Cities. Environ Health Perspect 125:97–103. doi: 10.1289/EHP271 

Kukavskaya E a, Soja  a J, Petkov  a P, et al (2013) Fire emissions estimates in Siberia: 

evaluation of uncertainties in area burned, land cover, and fuel consumption. Can J 

For Res Can Rech For 43:493–506. doi: DOI 10.1139/cjfr-2012-0367 

Kumar P, Morawska L, Martani C, et al (2015) The rise of low-cost sensing for managing 

air pollution in cities. Environ Int 75:199–205. doi: 10.1016/J.ENVINT.2014.11.019 

Larkin NK, O’Neill SM, Solomon R, et al (2009) The BlueSky smoke modeling 

framework. Int J Wildl Fire 18:906. doi: 10.1071/WF07086 

Lefohn AS, Knudsen HP, Logan JA, et al (1987) An Evaluation of the Kriging Method to 

Predict 7-h Seasonal Mean Ozone Concentrations for Estimating Crop Losses. 

JAPCA 37:595–602. doi: 10.1080/08940630.1987.10466247 

Leopold A (1987) Game Management. Univ of Wisconsin Press 

Li Z, Fraser R, Jin J, et al (2003) Evaluation of algorithms for fire detection and mapping 

across North America from satellite. J Geophys Res 108:4076. doi: 

10.1029/2001JD001377 

Li Z, Nadon S, Cihlar J (2000a) Satellite-based detection of Canadian boreal forest fires: 

Development and application of the algorithm. Int J Remote Sens 21:3057–3069. doi: 

10.1080/01431160050144956 

Li Z, Nadon S, Cihlar J, Stocks B (2000b) Satellite-based mapping of Canadian boreal 

forest fires: Evaluation and comparison of algorithms. Int J Remote Sens 21:3071–

3082. doi: 10.1080/01431160050144965 

Linares C, Carmona R, Tobías A, et al (2015) Influence of advections of particulate matter 



 199 

from biomass combustion on specific-cause mortality in Madrid in the period 2004–

2009. Environ Sci Pollut Res 22:7012–7019. doi: 10.1007/s11356-014-3916-2 

Liu Y (2005) Enhancement of the 1988 northern U.S. drought due to wildfires. Geophys 

Res Lett 32:L10806. doi: 10.1029/2005GL022411 

Liu Y (2014) A Regression Model for Smoke Plume Rise of Prescribed Fires Using 

Meteorological Conditions. J Appl Meteorol Climatol 53:1961–1975. doi: 

10.1175/JAMC-D-13-0114.1 

Liu Y, Koutrakis P, Kahn R, et al (2012) Estimating Fine Particulate Matter Component 

Concentrations and Size Distributions Using Satellite-Retrieved Fractional Aerosol 

Optical Depth: Part 2—A Case Study. J Air Waste Manage Assoc 57:1360–1369. 

Liu Y, Sarnat JA, Kilaru V, et al (2005) Estimating Ground-Level PM 2.5 in the Eastern 

United States Using Satellite Remote Sensing. Environ Sci Technol 39:3269–3278. 

doi: 10.1021/es049352m 

Liu Y, Stanturf J, Goodrick S (2010) Trends in global wildfire potential in a changing 

climate. For Ecol Manage 259:685–697. doi: 10.1016/J.FORECO.2009.09.002 

Malm WC, Sisler JF, Huffman D, et al (1994) Spatial and seasonal trends in particle 

concentration and optical extinction in the United States. J Geophys Res 99:1347. doi: 

10.1029/93JD02916 

Marmur A, Unal A, Mulholland JA, Russell AG (2005) Optimization-Based Source 

Apportionment of PM 2.5 Incorporating Gas-to-Particle Ratios. Environ Sci Technol 

39:3245–3254. doi: 10.1021/es0490121 

Matte TD, Cohen A, Dimmick F, et al (2009) Summary of the workshop on methodologies 

for environmental public health tracking of air pollution effects. Air Qual Atmos 

Health 2:177–184. doi: 10.1007/s11869-009-0059-6 

McGuinn LA, Ward-Caviness C, Neas LM, et al (2017) Fine particulate matter and 

cardiovascular disease: Comparison of assessment methods for long-term exposure. 

Environ Res 159:16–23. doi: 10.1016/j.envres.2017.07.041 

McKenzie D, Raymond CL, Kellogg L-KB, et al (2007) Mapping fuels at multiple scales: 

landscape application of the Fuel Characteristic Classification SystemThis article is 

one of a selection of papers published in the Special Forum on the Fuel Characteristic 

Classification System. Can J For Res 37:2421–2437. doi: 10.1139/X07-056 



 200 

McNider RT, Pour-Biazar A, Doty K, et al (2018) Examination of the Physical Atmosphere 

in the Great Lakes Region and its Potential Impact on Air Quality - Over-Water 

Stability and Satellite Assimilation. J Appl Meteorol Climatol JAMC–D–17–0355.1. 

doi: 10.1175/JAMC-D-17-0355.1 

Mouillot F, Schultz MG, Yue C, et al (2014) Ten years of global burned area products from 

spaceborne remote sensing-A review: Analysis of user needs and recommendations 

for future developments. Int J Appl Earth Obs Geoinf 26:64–79. doi: 

10.1016/j.jag.2013.05.014 

Napelenok SL, Cohan DS, Hu Y, Russell AG (2006) Decoupled direct 3D sensitivity 

analysis for particulate matter (DDM-3D/PM). Atmos Environ 40:6112–6121. doi: 

10.1016/J.ATMOSENV.2006.05.039 

Natarajan M, Pierce RB, Schaack TK, et al (2012) Radiative forcing due to enhancements 

in tropospheric ozone and carbonaceous aerosols caused by Asian fires during spring 

2008. J Geophys Res Atmos 117:n/a–n/a. doi: 10.1029/2011JD016584 

Odman M, Huang R, Pophale A, et al (2018) Forecasting the Impacts of Prescribed Fires 

for Dynamic Air Quality Management. Atmosphere (Basel) 9:220. doi: 

10.3390/atmos9060220 

Odman MT, Chang ME, Hu Y, et al (2017) Final Report: Dynamic Management of 

Prescribed Burning for Better Air Quality.  

Odman MT, Qin M, Hu Y, et al (2019) 2017 Projections and Interstate Transport of Ozone 

in the Southeastern United States.  

Pachon JE, Balachandran S, Hu Y, et al (2012) Development of outcome-based, 

multipollutant mobile source indicators. J Air Waste Manage Assoc 62:431–442. doi: 

10.1080/10473289.2012.656218 

Park Williams A, Cook BI, Smerdon JE, et al (2017) The 2016 Southeastern U.S. Drought: 

An Extreme Departure From Centennial Wetting and Cooling. J Geophys Res Atmos 

122:10,888–10,905. doi: 10.1002/2017JD027523 

Pleim J, Gilliam R, Appel W, Ran L (2016) Recent Advances in Modeling of the 

Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model. 

Springer International Publishing, pp 391–396 

Pope CA, Ezzati M, Dockery DW (2009) Fine-Particulate Air Pollution and Life 

Expectancy in the United States. N Engl J Med 360:376–386. doi: 



 201 

10.1056/NEJMsa0805646 

Prins EM, Menzel WP (1992) Geostationary satellite detection of bio mass burning in 

South America. Int J Remote Sens 13:2783–2799. doi: 10.1080/01431169208904081 

Prins EM, Menzel WP (1994) Trends in South American biomass burning detected with 

the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 

1991. J Geophys Res 99:16719. doi: 10.1029/94JD01208 

Qin M, Wang X, Hu Y, et al (2015) Formation of particulate sulfate and nitrate over the 

Pearl River Delta in the fall: Diagnostic analysis using the Community Multiscale Air 

Quality model. Atmos Environ 112:81–89. doi: 10.1016/j.atmosenv.2015.04.027 

Rai AC, Kumar P, Pilla F, et al (2017) End-user perspective of low-cost sensors for outdoor 

air pollution monitoring. Sci Total Environ 607-608:691–705. doi: 

10.1016/J.SCITOTENV.2017.06.266 

Randerson JT, Chen Y, Van Der Werf GR, et al (2012) Global burned area and biomass 

burning emissions from small fires. J Geophys Res Biogeosciences. doi: 

10.1029/2012JG002128 

Randerson JT, Liu H, Flanner MG, et al (2006) The Impact of Boreal Forest Fire on 

Climate Warming.  

Rappold AG, Reyes J, Pouliot G, et al (2017) Community Vulnerability to Health Impacts 

of Wildland Fire Smoke Exposure. Environ Sci Technol 51:6674–6682. doi: 

10.1021/acs.est.6b06200 

Rappold AG, Stone SL, Cascio WE, et al (2011) Peat Bog Wildfire Smoke Exposure in 

Rural North Carolina Is Associated with Cardiopulmonary Emergency Department 

Visits Assessed through Syndromic Surveillance. Environ Health Perspect 119:1415–

1420. doi: 10.1289/ehp.1003206 

Reid CE, Brauer M, Johnston FH, et al (2016) Critical Review of Health Impacts of 

Wildfire Smoke Exposure. Environ Health Perspect 124:1334–1343. doi: 

10.1289/ehp.1409277 

Reisen F, Meyer CP (Mick), McCaw L, et al (2011) Impact of smoke from biomass burning 

on air quality in rural communities in southern Australia. Atmos Environ 45:3944–

3953. doi: 10.1016/J.ATMOSENV.2011.04.060 

Rolph GD, Draxler RR, Stein AF, et al (2009) Description and Verification of the NOAA 



 202 

Smoke Forecasting System: The 2007 Fire Season. Weather Forecast 24:361–378. 

doi: 10.1175/2008WAF2222165.1 

Roy DP, Boschetti L, Justice CO, Ju J (2008) The collection 5 MODIS burned area product 

— Global evaluation by comparison with the MODIS active fire product. Remote 

Sens Environ 112:3690–3707. doi: 10.1016/j.rse.2008.05.013 

Sacks JD, Lloyd JM, Zhu Y, et al (2018) The Environmental Benefits Mapping and 

Analysis Program – Community Edition (BenMAP–CE): A tool to estimate the health 

and economic benefits of reducing air pollution. Environ Model Softw 104:118–129. 

doi: 10.1016/J.ENVSOFT.2018.02.009 

Sampson PD, Richards M, Szpiro AA, et al (2013) A regionalized national universal 

kriging model using Partial Least Squares regression for estimating annual PM2.5 

concentrations in epidemiology. Atmos Environ (1994) 75:383–392. doi: 

10.1016/j.atmosenv.2013.04.015 

Sarnat JA, Marmur A, Klein M, et al (2008) Fine Particle Sources and Cardiorespiratory 

Morbidity: An Application of Chemical Mass Balance and Factor Analytical Source-

Apportionment Methods. Environ Health Perspect 116:459–466. doi: 

10.1289/ehp.10873 

Sarnat SE, Coull BA, Schwartz J, et al (2005) Factors Affecting the Association between 

Ambient Concentrations and Personal Exposures to Particles and Gases. Environ 

Health Perspect 114:649–654. doi: 10.1289/ehp.8422 

Schroeder W, Csiszar I, Giglio L, Schmidt CC (2010) On the use of fire radiative power, 

area, and temperature estimates to characterize biomass burning via moderate to 

coarse spatial resolution remote sensing data in the Brazilian Amazon. J Geophys Res 

115:D21121. doi: 10.1029/2009JD013769 

Schultz MG (2002) On the use of ATSR fire count data to estimate the seasonal and 

interannual variability of vegetation fire emissions. Atmos Chem Phys Atmos Chem 

Phys 2:387–395. 

Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the 

biosphere and the atmosphere from biomass burning. Clim Change 2:207–247. doi: 

10.1007/BF00137988 

Simon M, Plummer S, Fierens F, et al (2004) Burnt area detection at global scale using 

ATSR-2: The GLOBSCAR products and their qualification. J Geophys Res 



 203 

109:D14S02. doi: 10.1029/2003JD003622 

Snyder EG, Watkins TH, Solomon PA, et al (2013) The Changing Paradigm of Air 

Pollution Monitoring. Environ Sci Technol 47:11369–11377. doi: 

10.1021/es4022602 

Sokolik IN, Curry J, Radionov V (2010) Interactions of Arctic Aerosols with Land-Cover 

and Land-Use Changes in Northern Eurasia and their Role in the Arctic Climate 

System. In: Eurasian Arctic Land Cover and Land Use in a Changing Climate. 

Springer Netherlands, Dordrecht, pp 237–268 

Solomon PA, Costantini M, Grahame TJ, et al (2012) Air pollution and health: bridging 

the gap from sources to health outcomes: conference summary. Air Qual Atmos Heal 

5:9–62. doi: 10.1007/S11869-011-0161-4 

Stein AF, Draxler RR, Rolph GD, et al (2015) NOAA’s HYSPLIT Atmospheric Transport 

and Dispersion Modeling System. Bull Am Meteorol Soc 96:2059–2077. doi: 

10.1175/BAMS-D-14-00110.1 

Tang W, Cohan DS, Morris GA, et al (2011) Influence of vertical mixing uncertainties on 

ozone simulation in CMAQ. Atmos Environ 45:2898–2909. doi: 

10.1016/j.atmosenv.2011.01.057 

Tansey K, Beston J, Hoscilo A, et al (2008a) Relationship between MODIS fire hot spot 

count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, 

Indonesia. J Geophys Res 113:D23112. doi: 10.1029/2008JD010717 

Tansey K, Grégoire J, Stroppiana D, et al (2004) Vegetation burning in the year 2000: 

Global burned area estimates from SPOT VEGETATION data. J Geophys Res 

109:D14S03. doi: 10.1029/2003JD003598 

Tansey K, Grégoire J-M, Defourny P, et al (2008b) A new, global, multi-annual (2000–

2007) burnt area product at 1 km resolution. Geophys Res Lett 35:L01401. doi: 

10.1029/2007GL031567 

US EPA (2014) 2014 National Emissions Inventory (NEI) Documentation.  

US EPA BenMAP Community Edition. https://www.epa.gov/benmap/benmap-

community-edition. Accessed 15 Feb 2019 

Van Donkelaar A, Martin R V., Park RJ, et al (2007) Model evidence for a significant 

source of secondary organic aerosol from isoprene. Atmos Environ 41:1267–1274. 



 204 

doi: 10.1016/j.atmosenv.2006.09.051 

Wade KS, Mulholland JA, Marmur A, et al (2006) Effects of Instrument Precision and 

Spatial Variability on the Assessment of the Temporal Variation of Ambient Air 

Pollution in Atlanta, Georgia. J Air Waste Manage Assoc 56:876–888. doi: 

10.1080/10473289.2006.10464499 

Wagstrom KM, Pandis SN, Yarwood G, et al (2008) Development and application of a 

computationally efficient particulate matter apportionment algorithm in a three-

dimensional chemical transport model. Atmos Environ 42:5650–5659. doi: 

10.1016/J.ATMOSENV.2008.03.012 

Woody MC, Baker KR, Hayes PL, et al (2016) Understanding sources of organic aerosol 

during CalNex-2010 using the CMAQ-VBS. Atmos Chem Phys 16:4081–4100. doi: 

10.5194/acp-16-4081-2016 

Wyat Appel K, Bhave P V., Gilliland AB, et al (2008) Evaluation of the community 

multiscale air quality (CMAQ) model version 4.5: Sensitivities impacting model 

performance; Part II—particulate matter. Atmos Environ 42:6057–6066. doi: 

10.1016/j.atmosenv.2008.03.036 

Xiao Q, Liu Y, Mulholland JA, et al (2016) Pediatric emergency department visits and 

ambient Air pollution in the U.S. State of Georgia: a case-crossover study. Environ 

Heal 15:115. doi: 10.1186/s12940-016-0196-y 

Xiao X, Cohan DS, Byun DW, Ngan F (2010) Highly nonlinear ozone formation in the 

Houston region and implications for emission controls. J Geophys Res 115:D23309. 

doi: 10.1029/2010JD014435 

Yao J, Eyamie J, Henderson SB (2016) Evaluation of a spatially resolved forest fire smoke 

model for population-based epidemiologic exposure assessment. J Expo Sci Environ 

Epidemiol 26:233–240. doi: 10.1038/jes.2014.67 

Yu S, Mathur R, Pleim J, et al (2012) Comparative evaluation of the impact of WRF/NMM 

and WRF/ARW meteorology on CMAQ simulations for PM2.5 and its related 

precursors during the 2006 TexAQS/GoMACCS study. Atmos Chem Phys 12:4091–

4106. doi: 10.5194/acp-12-4091-2012 

Zeng T, Liu Z, Wang Y (2016) Large fire emissions in summer over the southeastern US: 

Satellite measurements and modeling analysis. Atmos Environ 127:213–220. doi: 

10.1016/j.atmosenv.2015.12.025 



 205 

Zhang X, Kondragunta S (2008) Temporal and spatial variability in biomass burned areas 

across the USA derived from the GOES fire product. Remote Sens Environ 112:2886–

2897. doi: 10.1016/j.rse.2008.02.006 

Zhang X, Kondragunta S, Quayle B (2011) Estimation of Biomass Burned Areas Using 

Multiple-Satellite-Observed Active Fires. IEEE Trans Geosci Remote Sens 49:4469–

4482. doi: 10.1109/TGRS.2011.2149535 

Zhang Y, Huang J-P, Henze DK, Seinfeld JH (2007) Role of isoprene in secondary organic 

aerosol formation on a regional scale. J Geophys Res 112:D20207. doi: 

10.1029/2007JD008675 

Zheng T, Bergin MH, Johnson KK, et al (2018) Field evaluation of low-cost particulate 

matter sensors in high and low concentration environments. Atmos Meas Tech 

Discuss 1–40. doi: 10.5194/amt-2018-111 

Zhu C, Kobayashi H, Kanaya Y, Saito M (2017) Sizea-dependent validation of MODIS 

MCD64A1 burned area over six vegetation types in boreal Eurasia: Large 

underestimation in croplands. Sci Rep 7:4181. doi: 10.1038/s41598-017-03739-0 

 


